Advertisement

Numerical Invariantization for Morphological PDE Schemes

  • Martin Welk
  • Pilwon Kim
  • Peter J. Olver
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4485)

Abstract

Based on a new, general formulation of the geometric method of moving frames, invariantization of numerical schemes has been established during the last years as a powerful tool to guarantee symmetries for numerical solutions while simultaneously reducing the numerical errors. In this paper, we make the first step to apply this framework to the differential equations of image processing. We focus on the Hamilton–Jacobi equation governing dilation and erosion processes which displays morphological symmetry, i.e. is invariant under strictly monotonically increasing transformations of gray-values. Results demonstrate that invariantization is able to handle the specific needs of differential equations applied in image processing, and thus encourage further research in this direction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, L., et al.: Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis 123, 199–257 (1993)Google Scholar
  2. 2.
    Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal on Numerical Analysis 29, 845–866 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics, vol. 1805. Springer, Berlin (2003)zbMATHGoogle Scholar
  4. 4.
    Cartan, É.: La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés. Exposés de Géométrie, vol. 5. Hermann, Paris (1935)zbMATHGoogle Scholar
  5. 5.
    Breuß, M., Weickert, J.: A shock-capturing algorithm for the differential equations of dilation and erosion. Journal of Mathematical Imaging and Vision, in press.Google Scholar
  6. 6.
    Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphological filtering. IEEE Transactions on Signal Processing 42, 3377–3386 (1994)CrossRefGoogle Scholar
  7. 7.
    Fels, M., Olver, P.J.: Moving coframes. II. Acta Appl. Math. 55, 127–208 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. Journal of Differential Geometry 23, 69–96 (1986)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Grayson, M.: The heat equation shrinks embedded plane curves to round points. Journal of Differential Geometry 26, 285–314 (1987)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kim, P.: Invariantization of Numerical Schemes for Differential Equations Using Moving Frames. Ph.D. Thesis, University of Minnesota, Minneapolis (2006)Google Scholar
  11. 11.
    Kim, P.: Invariantization of the Crank-Nicholson Method for Burgers’ Equation. Preprint, University of Minnesota, Minneapolis.Google Scholar
  12. 12.
    Kim, P., Olver, P.J.: Geometric integration via multi-space. Regular and Chaotic Dynamics 9(3), 213–226 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Kimmel, R.: Numerical Geometry of Images. Springer, Berlin (2004)zbMATHGoogle Scholar
  14. 14.
    Lax, P.D.: Gibbs Phenomena. Journal of Scientific Computing 28, 445–449 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Mathéron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)zbMATHGoogle Scholar
  16. 16.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)zbMATHGoogle Scholar
  17. 17.
    Olver, P.J.: Geometric foundations of numerical algorithms and symmetry. Applicable Algebra in Engineering, Communication and Computing 11, 417–436 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Olver, P.J.: A survey of moving frames. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 105–138. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  20. 20.
    Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. International Journal of Computer Vision 11, 25–44 (1993)CrossRefGoogle Scholar
  21. 21.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)Google Scholar
  22. 22.
    Sethian, J.A.: Level Set Methods. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Welk
    • 1
  • Pilwon Kim
    • 2
  • Peter J. Olver
    • 3
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University, 66041 SaarbrückenGermany
  2. 2.Department of Mathematics, Ohio State University, Columbus, Ohio 43210U.S.A.
  3. 3.School of Mathematics, University of Minnesota, Minneapolis, MN 55455U.S.A.

Personalised recommendations