Skip to main content

Level Set Methods for Watershed Image Segmentation

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Abstract

In this work a marker-controlled and regularized watershed segmentation is proposed. Only a few previous studies address the task of regularizing the obtained watershed lines from the traditional marker-controlled watershed segmentation. In the present formulation, the topographical distance function is applied in a level set formulation to perform the segmentation, and the regularization is easily accomplished by regularizing the level set functions. Based on the well-known Four-Color theorem, a mathematical model is developed for the proposed ideas. With this model, it is possible to segment any 2D image with arbitrary number of phases with as few as one or two level set functions. The algorithm has been tested on real 2D fluorescence microscopy images displaying rat cancer cells, and the algorithm has also been compared to a standard watershed segmentation as it is implemented in MATLAB. For a fixed set of markers and a fixed set of challenging images, the comparison of these two methods shows that the present level set formulation performs better than a standard watershed segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caselles, V., et al.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nielsen, L.K., et al.: Reservoir Description using a Binary Level Set Model. In: Tai, X.-C., et al. (eds.) Image Processing Based on Partial Differential Equations, pp. 403–426. Springer, Heidelberg (2006)

    Google Scholar 

  3. Christiansen, O., Tai, X.C.: Fast Implementation of Piecewise Constant Level Set Methods. In: Tai, X.-C., et al. (eds.) Image Processing Based on Partial Differential Equations, pp. 289–308. Springer, Heidelberg (2006)

    Google Scholar 

  4. Lie, J., Lysaker, M., Tai, X.-C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing 15(5), 1171–1181 (2006)

    Article  Google Scholar 

  5. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  6. Cremers, D., et al.: Diffusion snakes: introducing statistical shape knowledge into the Mumford–Shah functional. International Journal of Computer Vision 50, 295–313 (2002), citeseer.ist.psu.edu/cremers02diffusion.html

    Article  MATH  Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988), http://dx.doi.org/10.1007/BF00133570

    Article  Google Scholar 

  8. Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)

    Article  Google Scholar 

  9. Meyer, F.: Topographic distance and watershed lines. Signal Processing 38(1), 113–125 (1994)

    Article  MATH  Google Scholar 

  10. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991), doi:10.1109/34.87344

    Article  Google Scholar 

  11. Nguyen, H., Worring, M., van den Boomgaard, R.: Watersnakes: Energy-driven watershed segmentation. IEEE Trans. on PAMI 25(3), 330–342 (2003), citeseer.ist.psu.edu/article/.html

    Google Scholar 

  12. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. on Image Processing 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics 79, 12–49 (1988), citeseer.ist.psu.edu/osher88fronts.html

    Article  MathSciNet  MATH  Google Scholar 

  15. Lie, J., Lysaker, M., Tai, X.-C.: A variant of the level set method and applications to image segmentation. Mathematics of Computation 75(255), 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felkel, P., Bruckschwaiger, M., Wegenkittl, R.: Implementation and complexity of the watershed-from-markers algorithm computed as a minimal cost forest. Computer Graphics Forum 20(3) (2001)

    Google Scholar 

  17. Chang, S.G., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing 9(9), 1522–1531 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hodneland, E., et al.: Automated detection of tunneling nanotubes in 3d images. Cytometry Part A 69(9), 961–972 (2006)

    Article  Google Scholar 

  19. Arbeléz, P.A., Cohen, L.D.: Energy partitions and image segmentation. J. Math. Imaging Vis. 20(1-2), 43–57 (2004)

    Article  Google Scholar 

  20. Appel, K.I., Haken, W.: Every planar map is four colorable. Illinois J. Math. 21, 429–567 (1977)

    MathSciNet  MATH  Google Scholar 

  21. Robertson, N., et al.: A new proof of the four colour theorem. Electronic Research Announcements of the American Mathematical Society 2(1) (1996), citeseer.ist.psu.edu/robertson96new.html

  22. Dervieux, A., Thomasset, F.: A finite element method for the simulation of Rayleigh–Taylor instability. In: Rautman, R. (ed.) Approximation Methods for Navier–Stokes Problems. Lecture Notes in Mathematics, vol. 771, pp. 145–158. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tai, XC., Hodneland, E., Weickert, J., Bukoreshtliev, N.V., Lundervold, A., Gerdes, HH. (2007). Level Set Methods for Watershed Image Segmentation. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics