Advertisement

Abstract

We describe three original exact solvers for Partial Max-SAT: PMS, PMS-hard, and PMS-learning. PMS is a branch and bound solver which incorporates efficient data structures, a dynamic variable selection heuristic, inference rules which exploit the fact that some clauses are hard, and a good quality lower bound based on unit propagation. PMS-hard is built on top of PMS and incorporates clause learning only for hard clauses; this learning is similar to the learning incorporated into modern SAT solvers. PMS-learning is built on top of PMS-hard and incorporates learning on both hard and soft clauses; the learning on soft clauses is quite different from the learning on SAT since it has to use Max-SAT resolution instead of SAT resolution. Finally, we report on the experimental investigation in which we compare the state-of-the-art solvers Toolbar and ChaffBS with PMS, PMS-hard, and PMS-learning. The results obtained provide empirical evidence that Partial Max-SAT is a suitable formalism for representing and solving over-constrained problems, and that the learning techniques we have defined in this paper can give rise to substantial performance improvements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsinet, T., Manyà, F., Planes, J.: Improved exact solver for weighted Max-SAT. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 371–377. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Argelich, J., Manyà, F.: Solving over-constrained problems with SAT technology. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 1–15. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems. Journal of Heuristics 12(4–5), 375–392 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Argelich, J., Manyà, F.: Learning hard constraints in Max-SAT. In: Proceedings of the Workshop on Constraint Solving and Constraint Logic Porgramming, CSCLP-2006, Lisbon, Portugal, pp. 1–12 (2006)Google Scholar
  5. 5.
    Bansal, N., Raman, V.: Upper bounds for MaxSat: Further improved. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 247–260. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Bonet, M., Levy, J., Manyà, F.: A complete calculus for Max-SAT. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bonet, M., Levy, J., Manyà, F.: Resolution for Max-SAT. Artificial Intelligence (2007), doi:10.1016/j.artint.2007.03.001.Google Scholar
  8. 8.
    Cha, B., et al.: Local search algorithms for partial MAXSAT. In: Proceedings of the 14th National Conference on Artificial Intelligence, AAAI’97, Providence, RI, USA, pp. 263–268. AAAI Press, Menlo Park (1997)Google Scholar
  9. 9.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Heinink, V., Seckington, M., van der Werf, F.: Experiments on Random 2-SoftSAT. Technical report, Delft University of Technology (2006)Google Scholar
  11. 11.
    Heras, F., Larrosa, J.: New inference rules for efficient Max-SAT solving. In: Proceedings of the National Conference on Artificial Intelligence, AAAI-2006, Boston, MA, USA, pp. 68–73 (2006)Google Scholar
  12. 12.
    Larrosa, J., Oliveras, A., Heras, F.: MiniMaxSat: A New Weighted Max-SAT Solver. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 41–55. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Jeroslow, R.G., Wang, J.: Solving propositional satisfiability problems. Annals of Mathematics and Artificial Intelligence 1, 167–187 (1990)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jiang, Y., Kautz, H., Selman, B.: Solving problems with hard and soft constraints using a stochastic algorithm for MAX-SAT. In: Proceedings of the 1st International Workshop on Artificial Intelligence and Operations Research (1995)Google Scholar
  15. 15.
    Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI-2005, Edinburgh, Scotland, pp. 193–198. Morgan Kaufmann, San Francisco (2005)Google Scholar
  16. 16.
    Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower bounds in branch and bound Max-SAT solvers. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for computing lower bounds for Max-SAT. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI-2006, Boston, MA, USA, pp. 86–91 (2006)Google Scholar
  18. 18.
    Loveland, D.W.: Automated Theorem Proving. A Logical Basis. Fundamental Studies in Computer Science, vol. 6. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  19. 19.
    Moskewicz, M., et al.: Chaff: Engineering an efficient sat solver. In: 39th Design Automation Conference (2001)Google Scholar
  20. 20.
    Shen, H., Zhang, H.: Study of lower bound functions for max-2-sat. In: Proceedings of AAAI-2004, pp. 185–190 (2004)Google Scholar
  21. 21.
    Xing, Z., Zhang, W.: An efficient exact algorithm for (weighted) maximum satisfiability. Artificial Intelligence 164(2), 47–80 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Zhang, L., et al.: Efficient conflict driven learning in a Boolean satisfiability solver. In: International Conference on Computer Aided Design, ICCAD-2001, San Jose, CA, USA, pp. 279–285 (2001)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Josep Argelich
    • 1
  • Felip Manyà
    • 1
  1. 1.Computer Science Department, Universitat de Lleida, Jaume II, 69, E-25001 LleidaSpain

Personalised recommendations