Mapping CSP into Many-Valued SAT

  • Carlos Ansótegui
  • María Luisa Bonet
  • Jordi Levy
  • Felip Manyà
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)


We first define a mapping from CSP to many-valued SAT which allows to solve CSP instances with many-valued SAT solvers. Second, we define a new many-valued resolution rule and prove that it is refutation complete for many-valued CNF formulas and, moreover, enforces CSP (i,j)-consistency when applied to a many-valued SAT encoding of a CSP. Instances of our rule enforce well-known local consistency properties such as arc consistency and path consistency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABLM07]
    Ansótegui, C., et al.: The logic behind weighted CSP. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, IJCAI’07, pp. 32–37 (2007)Google Scholar
  2. [ALM03]
    Ansótegui, C., Larrubia, J., Manyà, F.: Boosting Chaff’s performance by incorporating CSP heuristics. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 96–107. Springer, Heidelberg (2003)Google Scholar
  3. [AM04]
    Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into problems with boolean variables. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 1–15. Springer, Heidelberg (2005)Google Scholar
  4. [Bac06]
    Bacchus, F.: CSPs: Adding structure to SAT. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. [BHM99]
    Beckert, B., Hähnle, R., Manyà, F.: Transformations between signed and classical clause logic. In: Proc. of the 29th Int. Symp. on Multiple-Valued Logics, ISMVL’99, pp. 248–255 (1999)Google Scholar
  6. [BHM00]
    Beckert, B., Hähnle, R., Manyà, F.: The SAT problem of signed CNF formulas. In: Labelled Deduction. Applied Logic Series, vol. 17, pp. 61–82. Kluwer, Dordrecht (2000)Google Scholar
  7. [BHW04]
    Bessière, C., Hebrard, E., Walsh, T.: Local consistencies in SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 299–314. Springer, Heidelberg (2004)Google Scholar
  8. [DS06]
    Dimopoulos, Y., Stergiou, K.: Propagation in CSP and SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 137–151. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [FP01]
    Frisch, A.M., Peugniez, T.J.: Solving non-boolean satisfiability problems with stochastic local search. In: Proc. of the Int. Joint Conf. on Artificial Intelligence, IJCAI’01, pp. 282–288 (2001)Google Scholar
  10. [Gen02]
    Gent, I.P.: Arc consistency in SAT. In: Proc. of the 15th European Conf. on Artificial Intelligence, ECAI’02, pp. 121–125 (2002)Google Scholar
  11. [Häh93]
    Hähnle, R.: Short CNF in finitely-valued logics. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 49–58. Springer, Heidelberg (1993)Google Scholar
  12. [Häh94]
    Hähnle, R.: Efficient deduction in many-valued logics. In: Proc. of the Int. Symp. on Multiple-Valued Logics, ISMVL’94, pp. 240–249. IEEE Press, Los Alamitos (1994)Google Scholar
  13. [Wal00]
    Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Carlos Ansótegui
    • 1
  • María Luisa Bonet
    • 2
  • Jordi Levy
    • 3
  • Felip Manyà
    • 1
  1. 1.Universitat de Lleida (DIEI, UdL) 
  2. 2.Universitat Politècnica de Catalunya (LSI, UPC) 
  3. 3.Artificial Intelligence Research Institute (IIIA, CSIC) 

Personalised recommendations