Advertisement

Fault Localization and Correction with QBF

  • Stefan Staber
  • Roderick Bloem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)

Abstract

In this paper, we study the use of QBF solvers for fault localization and correction of sequential circuits. Given a violated specification, we compute whether the circuit can be repaired by evaluating a sequence of quantified Boolean formulas. If a repair exists, it can be extracted from a certificate for another quantified Boolean formula. Because it only finds components when a repair is possible, this approach is more precise than a satisfiability-based approach that we have developed earlier. We demonstrate this in an experimental evaluation.

Keywords

Clock Cycle Fault Localization Conjunctive Normal Form Safety Property Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AH99]
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15, 7–48 (1999)CrossRefGoogle Scholar
  2. [ALT04]
    Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM Transactions on Computational Logic 5(1), 1–25 (2004)CrossRefMathSciNetGoogle Scholar
  3. [ASV+05]
    Ali, M., et al.: Post-verification debugging of hierarchical designs. In: Proc. IEEE International Conference on Computer Aided Design (ICCAD 2005), San Jose, California, USA, pp. 871–876 (2005)Google Scholar
  4. [B+96]
    Brayton, R.K., et al.: VIS: A system for verification and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 428–432. Springer, Heidelberg (1996)Google Scholar
  5. [BCCZ99]
    Biere, A., et al.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. [Ben05a]
    Benedetti, M.: Extracting certificates from quantified Boolean formulas. In: International Joint Conference on Artificial Intelligence (IJCAI’05), pp. 47–53 (2005)Google Scholar
  7. [Ben05b]
    Benedetti, M.: sKizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, Springer, Heidelberg (2005)Google Scholar
  8. [BGS06]
    Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in n logn symbolic steps. Formal Methods in System Design 28, 37–56 (2006)zbMATHCrossRefGoogle Scholar
  9. [ETW02]
    Egly, U., Tompits, H., Woltran, S.: On quantifier shifting for quantified boolean formulas. In: Proceedings of the SAT-02 Workshop on Theory and Applications of Quantified Boolean Formulas (QBF-02), pp. 48–61 (2002)Google Scholar
  10. [GSB06]
    Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C programs. In: Workshop on Verification and Debugging (V&D’06), To Appear (2006)Google Scholar
  11. [JGB05]
    Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer, Heidelberg (2005)Google Scholar
  12. [Mai00]
    Maidl, M.: The common fragment of CTL and LTL. In: Proc. 41th Annual Symposium on Foundations of Computer Science, pp. 643–652 (2000)Google Scholar
  13. [SB06]
    Bacchus, F., Samulowitz, H.: Binary Clause Reasoning in QBF. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 353–367. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. [SFBD06]
    Staber, S., et al.: Automatic fault localization for property checking. In: Second Haifa Verification Conference (2006)Google Scholar
  15. [SJB05]
    Staber, S., Jobstmann, B., Bloem, R.: Finding and fixing faults. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 35–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. [Tho95]
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  17. [YM05]
    Yu, Y., Malik, S.: Validating the result of a quantified Boolean formula (QBF) solver: Theory and practice. In: Asia and South Pacific Design Automation Conference (ASPDAC’05), pp. 1047–1051 (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Stefan Staber
    • 1
  • Roderick Bloem
    • 1
  1. 1.Graz University of Technology 

Personalised recommendations