SAT Solving for Termination Analysis with Polynomial Interpretations

  • Carsten Fuhs
  • Jürgen Giesl
  • Aart Middeldorp
  • Peter Schneider-Kamp
  • René Thiemann
  • Harald Zankl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)


Polynomial interpretations are one of the most popular techniques for automated termination analysis and the search for such interpretations is a main bottleneck in most termination provers. We show that one can obtain speedups in orders of magnitude by encoding this task as a SAT problem and by applying modern SAT solvers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Annov, E., et al.: A SAT-based implementation for RPO termination. In: Short Papers of LPAR ’06 (2006)Google Scholar
  2. 2.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen (2001)Google Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge (1998)Google Scholar
  5. 5.
    Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO termination. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 4–18. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Codish, M., et al.: SAT solving for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Contejean, E., et al.: CiME,
  8. 8.
    Contejean, E., et al.: Mechanically proving termination using polynomial interpretations. J. Aut. Reason. 34(4), 325–363 (2005)zbMATHCrossRefGoogle Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Empirical evaluation of “SAT solving for termination analysis with polynomial interpretations”,
  11. 11.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The DP framework: Combining Techniques for Automated Termination Proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Giesl, J., et al.: Automated Termination Analysis for Haskell: From Term Rewriting to Programming Languages. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the DP framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Giesl, J., et al.: Mechanizing and improv- ing dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199(1-2), 172–199 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Hong, H., Jakuš, D.: Testing positiveness of polynomials. JAR 21(1), 23–38 (1998)CrossRefGoogle Scholar
  20. 20.
    Lankford, D.: On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)Google Scholar
  21. 21.
    Le Berre, D., et al.: SAT4J satisfiability library for Java,
  22. 22.
    Giesl, J., et al.: Automated Termination Analysis for Logic Programs by Term Rewriting. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 177–193. Springer, Heidelberg (2007)Google Scholar
  23. 23.
    Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean SAT solver. Journal on Satisfiability, Boolean Modeling and Computation 2, 61–96 (2006)Google Scholar
  24. 24.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, pp. 115–125 (1968)Google Scholar
  25. 25.
    Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: van Leeuwen, J., et al. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Zankl, H., Middeldorp, A.: KBO as a satisfaction problem. In: Proc. WST’06 (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Carsten Fuhs
    • 1
  • Jürgen Giesl
    • 1
  • Aart Middeldorp
    • 2
  • Peter Schneider-Kamp
    • 1
  • René Thiemann
    • 1
  • Harald Zankl
    • 2
  1. 1.LuFG Informatik 2, RWTH AachenGermany
  2. 2.Institute of Computer Science, University of InnsbruckAustria

Personalised recommendations