Advertisement

Abstract

Modern SAT solvers are proficient at solving Boolean satisfiability problems in Conjunctive Normal Form (CNF). However, these problems mostly arise from general Boolean circuits that are then translated to CNF. We outline a simple and expressive data structure for describing arbitrary circuits, as well as an algorithm for converting circuits to CNF. Our experimental results over a large benchmark suite show that the CNF problems we generate are consistently smaller and more quickly solved by modern SAT solvers than the CNF problems generated by current CNF generation methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brummayer, R., Biere, A.: Local two-level and-inverter graph minimization without blowup. In: Proc. 2nd Doctoral Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS ’06) (October 2006)Google Scholar
  2. 2.
    Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Eén, N., Sörensson, N.: MiniSat - a SAT solver with conflict-clause minimization. In: Bacchus, F., Walsh, T. (eds.) Posters of the 8th international Conference on Theory and Applications of Satisfiability Testing (2005)Google Scholar
  5. 5.
    Jackson, P., Sheridan, D.: Clause form conversions for Boolean circuits. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 183–198. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Manolios, P., Srinivasan, S.K., Vroon, D.: Automatic memory reductions for RTL-level verification. In: ICCAD 2006, ACM-IEEE International Conference on Computer Aided Design, ACM Press, New York (2006)Google Scholar
  7. 7.
    Manolios, P., Srinivasan, S.K., Vroon, D.: BAT: The Bit-level Analysis Tool (2006), Available from http://www.cc.gatech.edu/~manolios/bat/
  8. 8.
    Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125. Consultants Bureau, New York-London (1962)Google Scholar
  10. 10.
    Velev, M.N.: Efficient translation of boolean formulas to cnf in formal verification of microprocessors. In: ASP-DAC ’04: Proceedings of the 2004 conference on Asia South Pacific design automation, pp. 310–315. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Panagiotis Manolios
    • 1
  • Daron Vroon
    • 1
  1. 1.College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332USA

Personalised recommendations