Minimum 2CNF Resolution Refutations in Polynomial Time

  • Joshua Buresh-Oppenheim
  • David Mitchell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)


We present an algorithm for finding a smallest Resolution refutation of any 2CNF in polynomial time.


Polynomial Time 2CNF Formula Empty Clause Joint Derivation Implication Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekhnovich, M., et al.: Minimum propositional proof length is NP-hard to linearly approximate. JSL: Journal of Symbolic Logic 66 (2001)Google Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Buresh-Oppenheim, J., Mitchell, D.: Minimum Witnesses for Unsatisfiable 2CNFs. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 42–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd Ann. ACM Symp. on Theory of Computing, pp. 151–158. ACM Press, New York (1971)CrossRefGoogle Scholar
  5. 5.
    del Val, A.: On 2-SAT and Renamable Horn. In: AAAI’2000, Proc. 17th (U.S.) National Conference on Artificial Intelligence, MIT Press, Cambridge (2000)Google Scholar
  6. 6.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5(4) (1976)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Joshua Buresh-Oppenheim
    • 1
  • David Mitchell
    • 1
  1. 1.Simon Fraser University 

Personalised recommendations