A Lightweight Component Caching Scheme for Satisfiability Solvers

  • Knot Pipatsrisawat
  • Adnan Darwiche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)


We introduce in this paper a lightweight technique for reducing work repetition caused by non–chronological backtracking commonly practiced by DPLL–based SAT solvers. The presented technique can be viewed as a partial component caching scheme. Empirical evaluation of the technique reveals significant improvements on a broad range of industrial instances.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloul, F., Markov, I., Sakallah, K.: Force: a fast and easy-to-implement variable-ordering heuristic. In: Proc. of the 13th ACM Great Lakes Symposium on VLSI 2003, pp. 116–119 (2003)Google Scholar
  2. 2.
    Bayardo Jr., R.J., Schrag, R.C.: Using CSP look-back techniques to solve real-world SAT instances. In: AAAI’97, Providence, Rhode Island, pp. 203–208 (1997),
  3. 3.
    Beame, P., et al.: Memoization and dpll: Formula caching proof systems. In: Proc. of 18th Annual IEEE Conf. on Computational Complexity, Aarhus, Denmark, IEEE Computer Society Press, Los Alamitos (2003), Google Scholar
  4. 4.
    Biere, A., Sinz, C.: Decomposing sat problems into connected components. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2 (2006)Google Scholar
  5. 5.
    Darwiche, A.: New advances in compiling CNF to decomposable negational normal form. In: Proc. of European Conference on AI (2004)Google Scholar
  6. 6.
    Durairaj, V., Kalla, P.: Variable Ordering for Efficient SAT Search by Analyzing Constraint-Variable Dependencies. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 415–422. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Ginsberg, M.L.: Dynamic backtracking. Jrnl of Artf. Intel. Resrh. 1, 25–46 (1993), zbMATHGoogle Scholar
  9. 9.
    Huang, J., Darwiche, A.: A structure-based variable ordering heuristic for sat. In: IJCAI’03, Acapulco, Mexico, pp. 1167–1172 (2003)Google Scholar
  10. 10.
  11. 11.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP - A New Search Algorithm for Satisfiability. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 220–227. IEEE Computer Society Press, Los Alamitos (1996), CrossRefGoogle Scholar
  12. 12.
    Pipatsrisawat, K., Darwiche, A.: SAT Solver Description: RSatGoogle Scholar
  13. 13.
    Roberto, J., Bayardo, J., Pehoushek, J.D.: Counting models using connected components. In: Proc. of the 17th Natl. Conf. on AI, pp. 157–162. AAAI Press, Menlo Park (2000)Google Scholar
  14. 14.
    Rsat sat solver homepage,
  15. 15.
    Sang, T., et al.: Combining component caching and clause learning for effective model counting. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Beame, P., Kautz, H., Sang, T.: Heuristics for Fast Exact Model Counting. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 226–240. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    SAT’05 Competition Homepage,
  18. 18.
    Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed backtracking in a system for computer-aided circuit analysis. Artf. Intel. 9 (1977)Google Scholar
  19. 19.
    Velev, M. N.: Sat benchmark lib,
  20. 20.
    Zhang, L., et al.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001),

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Knot Pipatsrisawat
    • 1
  • Adnan Darwiche
    • 1
  1. 1.Computer Science Department, University of California, Los Angeles 

Personalised recommendations