Advertisement

On the Boolean Connectivity Problem for Horn Relations

  • Kazuhisa Makino
  • Suguru Tamaki
  • Masaki Yamamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4501)

Abstract

Gopalan et al. studied in ICALP06 [17] connectivity properties of the solution-space of Boolean formulas, and investigated complexity issues on the connectivity problems in Schaefer’s framework. A set S of logical relations is Schaefer if all relations in S are either bijunctive, Horn, dual Horn, or affine. They conjectured that the connectivity problem for Schaefer is in \(\mathcal{P}\). We disprove their conjecture by showing that there exists a set S of Horn relations such that the connectivity problem for S is co\(\mathcal{NP}\)-complete. We also show that the connectivity problem for bijunctive relations can be solved in O( min {n|ϕ|, T(n)}) time, where n denotes the number of variables, ϕ denotes the corresponding 2-CNF formula, and T(n) denotes the time needed to compute the transitive closure of a directed graph of n vertices. Furthermore, we investigate a tractable aspect of Horn and dual Horn relations with respect to characteristic sets.

Keywords

Constraint Satisfaction Problem Transitive Closure Boolean Formula Disjunctive Normal Form Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Information Processing Letters 8, 121–123 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Achlioptas, D., Ricci-Tersenghi, F.: On the solution-space geometry of random constraint satisfaction problems. In: Proceeding of 38th ACM Symposium on Theory of Computing, pp. 130–139 (2006)Google Scholar
  3. 3.
    Boros, E., et al.: A Complexity Index for Satisfiability Problems. SIAM J. Comput. 23(1), 45–49 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceeding of 43rd IEEE Symposium on Foundations of Computer Science, pp. 649–658 (2002)Google Scholar
  5. 5.
    Chandru, V., Hooker, J.N.: Extended Horn sets in propositional logic. J. ACM 38(1), 205–221 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System Sciences 51, 511–522 (1995)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125, 1–12 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Creignou, N., Khanna, S., Sudan, M.: Complexity classification of Boolean constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications (2001)Google Scholar
  9. 9.
    Creignou, N., Zanuttini, B.: A complete classification of the complexity of propositional abduction. SIAM Journal on Computing 36, 207–229 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dechter, R., Pearl, J.: Structure identification in relational data. Artificial Intelligence 58, 237–270 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Eiter, T., Ibaraki, T., Makino, K.: Computing intersections of Horn theories for reasoning with models. Artificial Intelligence 110, 57–101 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Eiter, T., Makino, K.: Generating all abductive explanations for queries on propositional Horn theories. KBS Research Report INFSYS RR-1843-03-09, Institute of Information Systems, Vienna University of Technology (2006)Google Scholar
  13. 13.
    Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: A brief survey. KBS Research Report INFSYS RR-1843-06-01, Institute of Information Systems, Vienna University of Technology (2006)Google Scholar
  14. 14.
    Ekin, O., Hammer, P.L., Kogan, A.: On connected Boolean functions. Discrete Applied Mathematics 96-97, 337–362 (1999)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. Journal of Algorithms 21, 618–628 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1978)Google Scholar
  17. 17.
    Kolaitis, P.G., et al.: The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Juban, L.: Dichotomy theorem for the generalize unique satisfiability problem. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Kirousis, L., Kolaitis, P.: The complexity of minimal satisfiability problems. Information and Computation 187, 20–39 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kautz, H., Kearns, M., Selman, B.: Reasoning With characteristic models. In: Proceedings AAAI-93, pp. 34–39 (1993)Google Scholar
  21. 21.
    Kautz, H., Kearns, M., Selman, B.: Horn approximations of empirical data. Artificial Intelligence 74, 129–245 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Kavvadias, D., Papadimitriou, C., Sideri, M.: On Horn envelopes and hypergraph transversals. In: Ng, K.W., et al. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993)Google Scholar
  23. 23.
    Khardon, R.: Translating between Horn representations and their characteristic models. Journal of AI Research 3, 349–372 (1995)zbMATHGoogle Scholar
  24. 24.
    Khardon, R., Roth, D.: Reasoning with models. Artificial Intelligence 87(1-2), 187–213 (1996)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Khardon, R., Roth, D.: Defaults and relevance in model-based reasoning. Artificial Intelligence 97, 169–193 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Kavvadias, D., Sideri, M.: The inverse satisfiability problem. SIAM Journal on Computing 28, 152–163 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Khanna, S., et al.: The approximability of constraint satisfaction problems. SIAM Journal on Computing 30, 1863–1920 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Lewis, H.R.: Renaming a set of clauses as a Horn set. J. ACM 25, 134–135 (1978)zbMATHCrossRefGoogle Scholar
  29. 29.
    McKinsey, J.: The decision problem for some classes of sentences without quantifiers. Journal of Symbolic Logic 8, 61–76 (1943)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceeding of 10th ACM Symposium of Theory of Computing, pp. 216–226 (1978)Google Scholar
  31. 31.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Heidelberg (2003)zbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Kazuhisa Makino
    • 1
  • Suguru Tamaki
    • 2
  • Masaki Yamamoto
    • 2
  1. 1.Graduate School of Information Science and Technology, University of Tokyo, Tokyo, 113-8656Japan
  2. 2.Graduate School of Informatics, Kyoto University, Kyoto, 606-8501Japan

Personalised recommendations