Advertisement

Abstract

We study parameterizations of the satisfiability problem for propositional formulas in conjunctive normal form. In particular, we consider two parameters that generalize the notion of matched formulas: (i) the well studied parameter maximum deficiency, and (ii) the size of smallest backdoor sets with respect to certain base classes of bounded maximum deficiency. The simplest base class considered is the class of matched formulas. Our main technical contribution is a hardness result for the detection of weak, strong, and deletion backdoor sets. This result implies, subject to a complexity theoretic assumption, that small backdoor sets with respect to the base classes under consideration cannot be found significantly faster than by exhaustive search.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A 43, 196–204 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bidyuk, B., Dechter, R.: On finding minimal w-cutset problem. In: UAI 2004, 20th Conference on Uncertainty in Artificial Intelligence (2004)Google Scholar
  3. 3.
    Dantchev, S., Martin, B., Szeider, S.: Parameterized proof complexity: a complexity gap for parameterized tree-like resolution. Technical Report TR07-001, Electronic Colloquium on Computational Complexity (ECCC) (Jan. 2007)Google Scholar
  4. 4.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Fleischner, H., Kullmann, O., Szeider, S.: Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Theoret. Comput. Sci. 289(1), 503–516 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Franco, J., Van Gelder, A.: A perspective on certain polynomial time solvable classes of satisfiability. Discr. Appl. Math. 125, 177–214 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.R.: Computers and Intractability. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Kleine Büning, H.: On subclasses of minimal unsatisfiable formulas. Discr. Appl. Math. 107(1–3), 83–98 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  11. 11.
    Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 96–103. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Nishimura, N., Ragde, P., Szeider, S.: Solving #SAT using vertex covers. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 396–409. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Szeider, S.: Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable. J. of Computer and System Sciences 69(4), 656–674 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Szeider, S.: Generalizations of matched CNF formulas. Ann. Math. Artif. Intell. 43(1-4), 223–238 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Tovey, C.A.: A simplified NP-complete satisfiability problem. Discr. Appl. Math. 8(1), 85–89 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: SAT 2003, Informal Proceedings, pp. 222–230 (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Stefan Szeider
    • 1
  1. 1.Department of Computer Science, Durham University, Durham DH1 3LE, EnglandUnited Kingdom

Personalised recommendations