Skip to main content

Physical Discharge Initiation (Ignition) Mechanisms

  • Chapter
Impulse Breakdown of Liquids

Part of the book series: Power Systems ((POWSYS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. M. Gavrilov, V. R. Kukhta, V. V. Lopatin, et al., Formation of a pulsed discharge in water, Russ. Phys. J., No. 1, 88–92 (1989).

    Google Scholar 

  2. V. Kukhta and V. Lopatin, Discharge propagation in water in a non-uniform field, in: Proc. 12th Int. Conf. on Conduction and Breakdown, Rome, (1996), pp. 259–262.

    Google Scholar 

  3. I. M. Gavrilov, V. R. Kukhta, and V. V. Lopatin, The effect of heating and EHD events on breakdown in water, in: Proc. 10th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, Grenoble, (1990), pp. 593–598.

    Google Scholar 

  4. V. R. Kukhta and V. V. Lopatin, Inception and development of prebreakdown cavities in water, in: Proc. 13th Int. Conf. on Conduction and Breakdown, Nara, (1999), pp. 473–476.

    Google Scholar 

  5. S. M. Korobeynikov and E. V. Yanshin, Model of prebreakdown processes in liquid dielectrics under pulse voltage, in: Conf. Record of the 9th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, Salford (1987), pp. 398–402.

    Google Scholar 

  6. S. M. Korobeynikov, On the role of bubbles in liquid electric breakdown, Teplofiz. Vys. Temp., No. 3, 362–367 (1998).

    Google Scholar 

  7. H. M. Jones and E. E. Kunhardt, Prebreakdown currents in water and aqueous solutions and their influence on pulsed dielectric breakdown, J. Appl. Phys., 78, No. 5, 3308–3314 (1995).

    Article  Google Scholar 

  8. J. M. Meek and J. D. Craggs, Electrical Breakdown of Gases, Oxford at the Clarendon Press, (1953).

    Google Scholar 

  9. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Breakdown in Gases, Ekaterinburg: URO – press, (1998).

    Google Scholar 

  10. E.M. Bazelyan, Yu P. Raizer, Spark Discharge, CRC Press, No 4, Roca, Raton, (1997), 294 P.

    Google Scholar 

  11. N. Felici, Electrostatics and hydrodynamics, J. Electrostat., 4, 119–139 (1978).

    Article  Google Scholar 

  12. V. V. Glazkov, O. A. Sinkevich, and P. V. Smirnov, A spherical bubble in liquid dielectric with an electric field, Teplof. Vys. Temp., 29, No. 6, 1095–1102 (1991).

    Google Scholar 

  13. S. M. Korobeynikov, Effect of the electric field on the boiling point of liquids, Inzh.-Fiz. Zh., No. 6, 1131–1134 (1981).

    Google Scholar 

  14. S. M. Korobeynikov and E. V. Yanshin, Dynamics of the electrostriction pressure near the spherical electrode, Zh. Tekh. Fiz., 53, No. 10, 2101–2111 (1983).

    Google Scholar 

  15. K. Yoshino et al., Pressure dependence of dielectric breakdown in liquid nitrogen, Jpn. J. Appl. Phys., 2051–2057, (1981).

    Google Scholar 

  16. V. P. Borodin and V. F. Klimkin, Effect of pressure on the mechanisms of n-hexane electric breakdown, Pis’ma Zh. Tekh. Fiz., 14, No. 9, 802–805 (1988).

    Google Scholar 

  17. K. Kao and J. McMath, Time-dependent pressure effects in liquids, IEEE Trans. El. Insul., EI5, 64 (1970).

    Article  Google Scholar 

  18. E. P. Kruglyakov et al., Investigation of diffusion electrodes in water breakdown, Zh. Tekh. Fiz., 50, No. 5, 993–998 (1980).

    MathSciNet  Google Scholar 

  19. K. C. Kao and J. B. Higham, The effect of hydrostatic pressure, temperature and voltage duration on the electric strength of hydrocarbon liquids, J. Electrochem. Soc., 108, 252 (1961).

    Google Scholar 

  20. M. I. Abramovitz and I. M. Stegun, eds., Handbook of Mathematical Functions, U.S. Govt. Printing Office, Washington (1972).

    Google Scholar 

  21. B. Halpern and R. Gomer, Field ionization in liquids, J. Chem. Phys., 51, No. 3, 1048–1056 (1969).

    Article  Google Scholar 

  22. A. Sommerfeld, H. Bethe, Electronentheorie der Metalle, 2nd edn., Springer Verlag, Berlin, (1933).

    Google Scholar 

  23. W. F. Schmidt, Electrons in non-polar dielectric liquids, IEEE Trans. El. Insul., EI26, No. 4, 560–567 (1991).

    Article  Google Scholar 

  24. I. G. Kaplan, A. M. Miterev, and V. Ya. Sukhonosov, Modeling of the primary water radiolysis stage on irradiation by fast electrons, Khim. Vys. Energ., 23, No. 5, 392–397 (1989).

    Google Scholar 

  25. E. V. Myuller, Autoionization and autoionization microscopy, Usp. Fiz. Nauk, 57, No. 3, 481–552 (1962).

    Google Scholar 

  26. W. F. Schmidt, Electronic conduction processes in dielectric liquids, IEEE Trans. El. Insul., EI19, No. 5, 389–418 (1984).

    Article  Google Scholar 

  27. K. Dotoku, H. Yamada, S. Sakamoto, et al., Field emission into nonpolar organic liquids, J. Chem. Phys., 69, No. 3, 1121–1125 (1978).

    Article  Google Scholar 

  28. A. Denat, J. P. Gosse, and B. Gosse, Electrical conduction of purified cyclohexane in a divergent electric field, IEEE Trans. El. Insul., EI23, No. 4, 545–554 (1988).

    Google Scholar 

  29. B. Halpern and R. Gomer, Field emission in liquids, J. Chem. Phys., 51, No. 3, 1031–1047 (1969).

    Article  Google Scholar 

  30. V. E. Klimkin, Bubble generation model for initiating breakdown from anode in n-hexane with quasi-uniform electrical fields, in: Proc. of the 13th Int. Conf. on Dielectric Liquids, Nara, 199–202 (1999).

    Google Scholar 

  31. V. P. Skripov, E. N. Sinitsyn, P. A. Pavlov, et al., Thermal Physics Properties of Liquids in the Metastable State, Atomizdat, Moscow (1980).

    Google Scholar 

  32. T. J. Lewis, Electronic processes in dielectric liquids under incipient breakdown stress, IEEE Trans. El. Insul., EI20, No. 2, 123–132 (1985).

    Article  Google Scholar 

  33. V. F. Klimkin and A. G. Ponomarenko, Investigation of the initial discharge stage in liquid dielectrics by optical methods, in: Proc. of the 14th Int. Congress on High-Speed Photography and Photonics, Moscow, 385–389 (1980).

    Google Scholar 

  34. Yu. S. Yakovlev, Hydrodynamics of Explosion, Sudpromgiz, Leningrad (1961).

    Google Scholar 

  35. H. S. Yadav, D. S. Murty, S. N. Verma, et al., Measurement of refractive index of water under high dynamic pressures, J. Appl. Phys., 44, No. 5, 2197–2200 (1973).

    Article  Google Scholar 

  36. K. A. Naugolńykh and N. A. Roi, Electrical Discharges in Water, Nauka, Moscow (1971).

    Google Scholar 

  37. E. V. Yanshin, I. T. Ovchinnikov, and Yu. N. Vershinin, A mechanism of pulsed breakdown of water, Dokl. Akad. Nauk SSSR, 214, No. 6, 1303–1306 (1974).

    Google Scholar 

  38. V. Y. Ushakov, Electrical conductivity and breakdown propagation in liquid dielectrics, Russian Phys. J., No. 1, 105–121 (1979).

    Google Scholar 

  39. V. Ya. Sukhonosov, A mechanism of physical and chemical processes of a pre-discharge stage of electrical breakdown of liquid water, Khim. Vys. Energ., 28, No. 5, 473–474 (1994).

    Google Scholar 

  40. L. T. Bugaenko, V. M. Byakov, and S. A. Kabakchi, A mechanism of water radiolysis, Khim. Vys. Energ., 19, No. 4, 291–302 (1985).

    Google Scholar 

  41. V. Ya. Sukhonosov and I. G. Kaplan, Excitation of shock waves in water under irradiation by fast electrons, Khim. Vys. Energ., 28, No. 3, 214–217 (1994).

    Google Scholar 

  42. V. V. Saraeva, Radiolysis of Hydrocarbons in the Liquid Phase, Publishing House of Moscow State University, Moscow (1986).

    Google Scholar 

  43. J. S. Clements, M. Sato, and R. H. Davis, Preliminary investigation of pre-breakdown phenomena and chemical reaction using a paused high-voltage discharge in water, IEEE Trans. Ind. Appl., 23, No. 2, 224–234 (1987).

    Google Scholar 

  44. V. F. Klimkin and V. V. Pikalov, On the possibilities of microinterferometry in the study of nonstationary processes, Prikl. Mekh. Tekh. Fiz., No. 3, 14–26 (1979).

    Google Scholar 

  45. I. K. Kikoin, ed., Tables of Physical Quantities, Atomizdat, Moscow (1976).

    Google Scholar 

  46. N. M. Baron, E. I. Kvyat, E. A. Podgornaya, et al., Handbook of Physicochemical Quantities, Khimiya, Leningrad (1972).

    Google Scholar 

  47. H. M. Jones and E. E. Kunhardt, Development of pulsed dielectric breakdown in liquids, J. Phys., D28, 178–188 (1995).

    Google Scholar 

  48. H. M. Jones and E. E. Kunhardt, Evolution of cathode-initiated pulsed dielectric breakdown in polar and nonpolar liquids, in: Proc. of the 12th Int. Conf. on Dielectric Liquids, Roma, (1996), pp. 365–368.

    Google Scholar 

  49. V. Y. Ushakov, Pulsed Breakdown of Liquids, Publishing House of Tomsk State University, Tomsk (1975).

    Google Scholar 

  50. M. I. Elinson and G. F. Vasiljev, Autoelectronic Emission, Publishing House of Physical and Mathematical Literature, Moscow (1958).

    Google Scholar 

  51. E. V. Yanshin, K. V. Yanshin, and S. M. Korobeynikov, Space charge and pre-breakdown bubble formation near point electrodes under pulse voltage, in: Conf. Record of the 8Dielectric Liquids, Pavia, (1984), pp. 194–198.

    Google Scholar 

  52. R. Kattan, A. Denat, and O. Lesaint, Generation, growth and collapse of vapor bubbles in hydrocarbon liquids under a high divergent electric field, J. Appl. Phys., 66, 4062–4066 (1989).

    Article  Google Scholar 

  53. R. Kattan, A. Denat, and N. Bonifaci, Formation of vapor bubbles in non-polar liquids initiated by current pulses, IEEE Trans. El. Insul., EI26, No. 4, 656–662 (1991).

    Article  Google Scholar 

  54. K. L. Stricklett, C. Fenimore, E. F. Kelly, et al., Observation of partial discharge in hexane under high magnification, IEEE Trans. El. Insul., EI26, No. 4, 692–698 (1991).

    Article  Google Scholar 

  55. V. Giraud and P. Krebs, The onset of electron localization in subcritical water vapor, Chem. Phys. Lett., 86, 85–90 (1982).

    Article  Google Scholar 

  56. V. F. Klimkin, Mechanisms of electrical breakdown of water from tip anode in the nanosecond range, Pis’ma Zh. Tekh. Fiz., 16, No. 4, 54–58 (1990).

    Google Scholar 

  57. V. F. Klimkin, A mechanism of electrical breakdown of n-hexane in the nanosecond range, Zh. Tekh. Fiz., 60, No. 6, 161–163 (1990).

    Google Scholar 

  58. A. L. Kuperstokh, A Fluctuation model of liquid dielectric breakdown, Pis’ma Zh. Tekh. Fiz., 18, No. 19, 91–96 (1992).

    Google Scholar 

  59. V. F. Klimkin and A. L. Kupershtokh, Statistical lag time in fluctuation model of liquid dielectric breakdown and experimental results, in: Proc. of the 11th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, Baden-Dattwil, (1993), pp. 395–399.

    Google Scholar 

  60. A. L. Kupershtokh, Propagation of streamer top between electrodes for fluctuation model of liquid dielectrics breakdown, in: Proc. of the 12th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, Roma, (1996), pp. 210–213.

    Google Scholar 

  61. E. F. Kelley and R. E. Hebner, The electric field distribution associated with prebreakdown phenomena in nitrobenzene, J. Appl. Phys., 52, No. 1, 191–195 (1981).

    Article  Google Scholar 

  62. V. M. Muratov and V. Y. Ushakov, Phenomena on the electrodes in pulsed breakdown of electrolytes in micron gaps, in: High-Voltage Engineering, Publishing House of Tomsk State University, Tomsk, (1973), pp. 31–33.

    Google Scholar 

  63. V. V. Lopatin, V. Y. Ushakov, and V. P. Chernenko, Ignition and propagation of a nanosecond discharge in liquids, Russ. Phys. J., No. 3, 100–105 (1975).

    Google Scholar 

  64. J. C. Martin, Nanosecond pulse technique, Preprint, Aldermoston, Berks (1970).

    Google Scholar 

  65. A. L. Kupershtokh and D.I. Karpov, Models of Pulse Conductivity of Streamers Propagating in Dielectric Liquid, 2005 IEEE Intern. Conf. on Diel. Liquids, Portugal, Coimbra, June 26-July 1, (2005), pp. 87–90.

    Google Scholar 

  66. M. Kim, S. D. Reedy, and R. E. Hebner, The incipient mode of streamers in a dielectric liquid as a function of electric field, in: Proc. 2005 IEEE Int. Conf. on Dielectric Liquids, Coimbra (2005), pp. 71–74.

    Google Scholar 

  67. O. L. Hestad, S. Ingebrigtsen, and L. E. Lundgaard, Streamer initiation in cyclohexane, Midel 7131 and Nyrto 10X, in: Proc. 2005 IEEE Int. Conf. on Dielectric Liquids, Coimbra (2005), pp. 123–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ushakov, V.Y. (2007). Physical Discharge Initiation (Ignition) Mechanisms. In: Impulse Breakdown of Liquids. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72760-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72760-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72759-0

  • Online ISBN: 978-3-540-72760-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics