An Efficient Virtual Topology Design and Traffic Engineering Scheme for IP/WDM Networks

  • Namik Sengezer
  • Ezhan Karasan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4534)


We propose an online traffic engineering (TE) scheme for efficient routing of bandwidth guaranteed connections on a Multiprotocol label switching (MPLS)/wavelength division multiplexing (WDM) network with a traffic pattern varying with the time of day. We first consider the problem of designing the WDM virtual topology utilizing multi-hour statistical traffic pattern. After presenting an effective solution to this offline problem, we introduce a Dynamic tRaffic Engineering AlgorithM (DREAM) that makes use of the bandwidth update and rerouting of the label switched paths (LSPs). The performance of DREAM is compared with commonly used online TE schemes and it is shown to be superior in terms of blocked traffic ratio.


Traffic Engineering Virtual Topology Design MPLS LSP Dynamic Routing 


  1. 1.
    Xiao, X., Hannan, A., Bailey, B., Ni, L.: Traffic Engineering with MPLS in the Internet. Network, IEEE 14(2), 28–33 (2000)CrossRefGoogle Scholar
  2. 2.
    Awduche, D., Malcolm, J., Agogbua, J., O’Dell, M., McManus, J.: RFC2702: Requirements for Traffic Engineering Over MPLS. Internet RFCs (1999)Google Scholar
  3. 3.
    Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RFC3209: RSVP-TE: Extensions to RSVP for LSP Tunnels. Internet RFCs (2001)Google Scholar
  4. 4.
    Bouillet, E., Labourdette, J., Ramamurthy, R., Chaudhuri, S.: Lightpath Reoptimization in Mesh Optical Networks. IEEE/ACM Transactions on Networking (TON) 13(2), 437–447 (2005)CrossRefGoogle Scholar
  5. 5.
    Bhatia, R., Kodialam, M.S., Lakshman, T.V.: Fast Network Re-optimization Schemes for MPLS and Optical networks. Computer Networks 50(3), 317–331 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Iovanna, P., Sabella, R., Settembre, M.: A Traffic Engineering System for Multilayer Networks Based on the GMPLS Paradigm. Network, IEEE 17(2), 28–37 (2003)CrossRefGoogle Scholar
  7. 7.
    Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Elsevier/Morgan Kaufmann Amsterdam (2004)Google Scholar
  8. 8.
    Milbrandt, J., Menth, M., Kopf, S.: Adaptive Bandwidth Allocation: Impact of Traffic Demand Models for Wide Area Networks. In: 19th International Teletraffic Congress (ITC19), Beijing, China (2005)Google Scholar
  9. 9.
    Glover, F., Laguna, M.: Tabu Search. KLUWER ACADEMIC PUBL (1997)Google Scholar
  10. 10.
    Suri, S., Waldvogel, M., Warkhede, P.: Profile-Based Routing: A New Framework for MPLS Traffic Engineering. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) Quality of Future Internet Services. LNCS, vol. 2156, Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Wang, B., Su, X., Chen, C.: A New Bandwidth Guaranteed Routing Algorithm for MPLS Traffic Engineering. In: Sengezer, N., Karasan, E. (eds.) Proceedings of ICC vol. 2, pp. 1001–1005 (2002)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Namik Sengezer
    • 1
  • Ezhan Karasan
    • 1
  1. 1.Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800Turkey

Personalised recommendations