Skip to main content

Radiopharmaceuticals: Molecular Imaging using Positron Emission Tomography

  • Chapter
Molecular Imaging I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/1))

Abstract

We describe the use of molecules labeled with short-lived emitting radionuclides for molecular imaging in combination with the positron emission tomography technique. How to use molecular probes to visualize and quantitatively determine rates of specific biochemical events such as synaptic transmission, enzymatic processes and binding to specific receptor proteins is highlighted. The sensitivity of the PET technique and the ability to measure and validate relationships between molecular events and biological functions is a key factor for the successful application of PET in biomedical research. In specific applications, the opportunity of using molecules labeled in specific positions may be critical. Molecular imaging using PET is also gaining increasing interest as a tool in drug development, especially when applied to early proof of concept studies in man.

In this chapter, the concept of molecular imaging is exemplified and the use of position-specific labeling of tracer molecules as a tool to gain understanding of complex biological processes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoni G, Gustavsson SA, Kihlberg T, Warren K, L ångstr öm B (2006) Synthesis of [carbonyl-11 C]zolmitriptan by selenium mediated carbonylation. Internal communication, Uppsala Imanet AB

    Google Scholar 

  • Aquilonius SM, Bergström K, Eckernäs SA, Hartvig P, Leenders KL, Lundquist H, Antoni G, Gee A, Rimland A, Ulin J, L ångstr öm B (1987) In vivo evaluation of striatal dopamine reup-take sites using 11 C-nomifensine and positron emission tomography. Acta Neurol Scand 76: 283-287

    Article  PubMed  CAS  Google Scholar 

  • Bergström M, Muhr C, Lundberg PO, Långstr öm B (1991) PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 32:610-615

    PubMed  Google Scholar 

  • Bergstr öm M, Nordberg A, Lunell E, Antoni G, L ångstr öm B (1995) Regional deposition of in-haled 11 C-nicotine vapor in the human airway as visualized by positron emission tomography. Clin Pharmacol Ther 57:309-317

    Article  Google Scholar 

  • Bergstr öm M, Eriksson B, Oberg K, Sundin A, Ahlstr öm H, Lindner KJ, Bjurling P, L ångstr öm B (1996) In vivo demonstration of of enzymatic activity in endocrine pancreatic tumours -decarboxylation of 11 C-DOPA to dopamine. J Nucl Med 37:32-37

    Google Scholar 

  • Bergstr öm M, Westerberg G, Kihlberg T, L ångstr öm B (1997a) Synthesis of some 11 C-labelled MAO-A inhibitors and their in vivo uptake kinetics in rhesus monkey. Nucl Med Biol 24: 381-388

    Google Scholar 

  • Bergstr öm M, Westerberg G, Nemeth G, Traut M, Gross G, Greger G, Muller-Peltzer H, Safer A, Eckernas SA, Grahner A, Langstrom B (1997b) MAO-A inhibition in brain after dosing with esuprone, moclobemide and placebo in healthy volunteers: in vivo studies with positron emis-sion tomography. Eur J Clin Pharmacol. 52:121-128

    Article  Google Scholar 

  • Bergstr öm M, Bonasera T, Li L, Bergstr öm E, Backlin C, Juhlin C, L ångstr öm B (1998) In vitro and in vivo primate validation of 11 C-etomidate and metomidate as potential tracers for the adrenal cortex and its tumours. J Nucl Med 39:982-989

    Google Scholar 

  • Bergstr öm M, Juhlin C, Bonasera TA, Sundin A, Rastad J, Akerström G, L ångstr öm B (2000) PET imaging of adrenal cortical tumors with the 11-β-hydroxylase tracer 11 C-metomidate. J Nucl Med 41:275-282

    Google Scholar 

  • Bergstr öm M, L ångstr öm B (2005) Pharmacokinetic studies with PET. In: Rudin M (ed) Progress in drug research, vol 62. Birkhauser, Basel

    Google Scholar 

  • Bergstr öm M, Yates R, Wall A, Kagedal M, Syv änen S, L ångstr öm B (2006) Blood-brain barrier penetration of zolmitriptan - modelling of positron emission tomography data. J Pharmacokinet Pharmacodyn 33:75-91

    Article  CAS  Google Scholar 

  • Bjurling P, Antoni G, Watanabe Y, L ångstr öm B (1990a) Enzymatic synthesis of carboxy-11 C-labelled L-tyrosine, L-DOPA, L-tryptophan, and 5-hydroxy-tryptophan. Acta Chem Scand 44:178-182

    Article  CAS  Google Scholar 

  • Bjurling P, Watanabe Y, Oka S, Nagasawa T, Yamada H, L ångstr ön B (1990b) Multi-enzymatic synthesis of β-11 C labeled L-tyrosine, and L-DOPA. Acta Chem Scand 44:183-188

    Article  CAS  Google Scholar 

  • Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-dihydroxyphenylalanine and 5-hydroxy-tryptophanas reserpine antagonist. Nature 180:1200-1201

    Article  PubMed  CAS  Google Scholar 

  • Carson RE (2003) Tracer kinetic modeling in PET. In: Valk PE, Bailey DL, Townsend DE, Maisey MN (eds) Positron Emission Tomography - basic science and clinical practice. Springer, London

    Google Scholar 

  • Cho HJ, Skowera A, Cleare A, Wessely S (2006) Chronic fatigue syndrome: an update on phe-nomenology and patophysiology. Curr Opin Psychiatry 19:67-73

    Article  PubMed  Google Scholar 

  • Cummings P, Hausser M, Martin WR, Grierson J, Adam MJ, Ruth TJ, McGeer EG (1988) Kinetics of in vitro decarboxylation and the in vivo metabolism of 2-18 F- and 6-18 F-fluorodopa in the hooded rat. Biochem Pharmacol 37:247-250

    Article  Google Scholar 

  • Elsinga PH, Hatano K, Ishiwata K (2006) PET tracers for imaging of the dopaminergic system. Curr Med 13:2139-2153

    Article  CAS  Google Scholar 

  • Eriksson B, Lilja A, Ahlstr öm H, L ångstr öm B (1993) Positron emission tomography in neuroen-docrine gastrointestinal tumours. Acta Oncologia Suppl 32:189-196

    Article  CAS  Google Scholar 

  • Eriksson B, Orlefors H, Oberg K, Sundin A, Bergstr öm M, L ångstr öm B (2005) Developments in PET for the detection of endocrine tumours. Best Prac Res Clin Endocrinol Metab 19:311-324

    Article  CAS  Google Scholar 

  • Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedstrom CG, Litton JE, Sedvall G (1985) Substi-tuted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 82:3863-3867

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Wang GJ, Logan J, Xie S, Volkov ND, MacGregor RR, Schlyer DJ, Pappas N, Alexoff DL, Patlak C, Wolf AP (1995) Selective reduction of radiotracer trapping by deu-terium substitution: comparison of carbon-11 L-deprenyl and carbon-11 deprenyl-D2 for MAO-B mapping. J Nucl Med 36:1255-1262

    PubMed  CAS  Google Scholar 

  • Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137-138

    Article  PubMed  CAS  Google Scholar 

  • Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, Houle S, Kapur S, Wilson AA (2006) Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem 97:1089-1103

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Stone-Elander S, Farde L, Fasth KJ, L ångstr öm B, Sedvall L (1986) Preparation of 11 C-labelled SCH23390 for the in vivo study of dopamine D1 receptors using positron emission tomography. Appl Radiat Isot 40:557-561 200G. Antoni, B. L ångstr öm

    Google Scholar 

  • Halldin C, Farde L, Lundkvist C, Ginovart N, Nakashima Y, Karslsson P, Swahn CG (1996) [11 C]-β-CIT-FE, a radioligand for quantitation of the dopamine transporter in the living brain isung positron emission tomography. Synapse 22:386-390

    Article  PubMed  CAS  Google Scholar 

  • Hartvig P, A˚ gren H, Reibring L, Tedroff J, Bjurling P, Kihlberg T, L ångstr öm B (1991) Brain ki-netics of L-[β-11 C]dopa in humans studied by positron emission tomography. J Neural Transm 86:25-41

    Article  CAS  Google Scholar 

  • Hartvig P, Torstenson R, Tedroff J, Watanabe Y, Fasth KJ, Bjurling P, L ångstr öm B (1997) Am-phetamine effects on dopamine release and synthesis rate studied in the rhesus monkey barin by positron emission tomography. J Neural Transm 104:329-339

    Article  PubMed  CAS  Google Scholar 

  • Hennings J, Lindhe O, Bergström M, Långström B, Sundin A, Hellman P (2006) [11 C]metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings. J Clin Endocrinol Metab 91:1410-1414

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EJ, Phelps ME (1986) Positron emission tomography: principles and quantitation In: Phelps ME, Mazziotta J, Schelbert (eds) Positron emission tomography and autoradiography: principles and applications for the brain and heart. Raven Press, New York

    Google Scholar 

  • Jacobson GB, Moulder R, Lu L, Bergstr öm M, Markides KE, L ångstr öm B (1997) Supercritical Fluid Extraction of 11 C-Labelled Metabolites in Tissue using Supercritical Ammonia. Analyti-cal Chem 69(3):275-280

    Article  CAS  Google Scholar 

  • Jazczak RJ, Tsui BM (1995) Single photon emission computed tomography (SPECT) In: Wagner HN, Szabo Z (eds) Principle of nuclear medicine. Saunders, Philadelphia

    Google Scholar 

  • Korf J, Reiffers S, Beerling van der molen HD, Lakke JP, Paans AM, Valburg W, Woldring MG (1978) Rapid decarboxylation of carbon-11 labelled DL-dopa in the brain: a potential approach for external detection of nervous structures. Brain Res 145:59-67

    Google Scholar 

  • Kuratsune H, Yamagushi K, Takahashi M, Misaki H, Tagawa S, Kitani T (1994) Acylcarnitine deficiency in chronic fatigue syndrome. Clin Infect Dis 18(Suppl 1):62-67

    Google Scholar 

  • Kuratsune H, Watanabe Y, Yamaguti K, Jacobsson G, Takahashi M, Machii T, Onoe H, Onoe K, Matsumara K, Valind S, Katani K, L ångstr öm B (1997) High uptake of [2-11 C]acetyl-L-carnitine into the brain: a PET study. Biochem Biophys Res Commun. 231:488-493

    Article  PubMed  CAS  Google Scholar 

  • Långström B, Itsenko O, Rahman O (2007) C-Carbonmonoxide, a versatile and useful pre-cursor in labeling chemistry for PET-ligand development. J Lab Comp Radiopharmaceutic 50: 794-810

    Article  CAS  Google Scholar 

  • Learned-Coughlin SM, Bergstr öm M, Savitcheva I, Ascher J, Schmith VD, L ångstr öm B (2003) In vivo activity of buproprion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry 54:800-805

    Article  PubMed  CAS  Google Scholar 

  • Lindner KJ, Hartvig P, Tedroff J, Ljunsgtr öm A, Bjurling P, L ångstr öm B (1995) Liquid chro-matographic analysis of brain homogenates and microdialysates for the quantification of L-[β-11 C]DOPA and its metabolites for the validation of positron emission tomography studies. J Pharm Biomed Anal 13:361-367

    Article  PubMed  CAS  Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N, Swahn CG, Farde L (1997) [18 F]-CIT-FP is superior to [11 C]-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol 24:621-627

    Article  PubMed  CAS  Google Scholar 

  • Lunell E, Bergstr öm M, Antoni G, L ångstr öm B, Nordberg A (1996) Nicotine deposition and body distribution froma a nicotine inhaler and a cigarette with positron emission tomography. Clin Pharmacol Ther 593-594

    Google Scholar 

  • Muhr C, Bergstr öm M (1991) Positron emission tomography applied in the study of pituitary ade-nomas. J Endocrinol Invest 14:509-528

    PubMed  CAS  Google Scholar 

  • Orlefors H, Sundin A, Ahlstr öm H, Bjurling P, Bergstr öm M, Lilja A, L ånsgtr öm B, Oberg K, Eriksson B (1998) PET with 5-hydroxytryptophan in endocrine tumours. J Clin Oncol 7: 2534-2542

    Google Scholar 

  • Patlak CS, Blasberg RG (1985) graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584-590

    CAS  Google Scholar 

  • Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, Dhawan V, Feigin A, Fahn S, Guttman M, Gwinn-Hardy K, McFarland H, Innis R, Katz RG, Kieburtz K, Kish SJ, Lange N, Langston JW, Marek K, Morin L, Moy C, Murphy D, Oertel WH, Oliver G, Palesch Y, Powers W, Seibyl J, Sethi KD, Shults CW, Sheehy P, Stoessl AJ, Holloway R (2005) The role of radiotracer imaging in Parkinson disease. Neurology 25:208-215

    Google Scholar 

  • Rinne OJ, Nurmi E, Ruottinen HM, Bergman J, Eskola O, Solin O (2001) [18 F]FDOPA and [18 F]CFT are both sensitive markers to detect presynaptic hypofunction in early Parkinson’s disease. Synapse 40:193-200

    Article  PubMed  CAS  Google Scholar 

  • Shulkin BL, Wieland DM, Schwaiger M, Thompsson NW, Francis IR, Haka MS, Rosenspire B, Sisson JC, Kuhl DE (1992) An approach to the localization of pheochromocytoma. J Nuc Med 33:1125-1131

    CAS  Google Scholar 

  • Shulkin BL, Thompson NW, Shapiro B, Francis IR, Sisson JC (1999) Pheochromocytoma: imaging with 2-[fluorine-18]fluoro-2-deoxy-D-glucose PET. Radiology 212:35-41

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Gribbestad IS, Westergaard N, Nielsen G, Unsgard G, Schousboe A, Petersen SB (1994) Nuclear magnetic resonance spectroscopy: biochemical evaluation of brain function in vivo and in vitro. Neurotoxicology 15:579-590

    PubMed  CAS  Google Scholar 

  • Tedroff J, Aquilonius SM, Laihinen A, Rinne U, HArtvig P, Andersson J, Lundquist H, Haaparanta M, Solin O, Antoni G, Ulin J, L ånsgtr öm B (1990) Striatal kinetics of [11 C]-(+)nomifensine and 6-[18 F]fluoro-L-dopa in Parkinson’s disease measured with positron emission tomography. Acta Neurol Scand 8:24-30

    Google Scholar 

  • Tedroff J, Aquilonius SM, Hartvig P, Bredberg E, Bjurling P, L ångstr öm B (1992a) Cerebral uptake and utilization of therapeutic [beta-11 C]-L-DOPA in Parkinson’s disease measured by positron emission tomography. Relation to motor response. Acta Neurol Scand 85:95-102

    Article  CAS  Google Scholar 

  • Tedroff J, Aquilonius SM, Hartvig P, Lundqvist H, Bjurling P, Långström B (1992b) estimation of regional cerebral utilization of [11 C]-L-3,4-dihydroxyphenylalanine (DOPA) in the primate by positron emission tomography. Acta Neurol Scand 85:166-173

    Article  CAS  Google Scholar 

  • Torstenson R, Hartvig P, L ångstr öm B, Westerberg G, Tedroff J (1997) Differential effects of levodopa on dopaminergic function in early and advanced Parkinson’s disease. Ann Neurol 41:334-340

    Article  PubMed  CAS  Google Scholar 

  • Torstenson R, Hartvig P, L ångstr öm B, Bastami S, Antoni G, Tedroff J (1998) Effect of apomor-phine infusion on dopamine synthesis rate relates to dopaminergic tone. Neuropharmacology 37:989-995

    Article  PubMed  CAS  Google Scholar 

  • Torstenson R, Tedroff J, Hartvig P, Fasth KJ, L ånsgtr öm B (1999) A comparison of 11 C-labelled L-DOPA and L-fluoroDOPA as PET tracers for the presynaptic dopaminergic system. J Cereb Blood Flow 19:1142-1149

    Article  CAS  Google Scholar 

  • Trampal C, Engler H, Juhlin C, Bergstr öm M, L ångstr öm B (2004) Pheochromocytoma: detection with 11 C-hydroxyephedrine PET. Radiology 230:423-428

    Article  PubMed  Google Scholar 

  • Valk PE, Bailey DL, Townsend DE, Maisey MN (eds) (2003) Positron Emission Tomography -basic science and clinical practice. Springer, London

    Google Scholar 

  • Wadsal W, Mitterhauser M, Rendl G, Schuetz M, Mien LK, Ettlinger DE, Dudczak R, Kletter K, Karanikas G (2006) [18 F]FETO for adrenocortical PET imaging; a pilot study in healthy vol-unteers. Eur J Nucl Med Mol Imaging 33:928-931

    Article  CAS  Google Scholar 

  • Wagner jr, HN, Burns D, Dannals RF, Wong D, L ångstr öm B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SF, Kramer AW, Kuhar MJ (1983) Assessment of dopamine receptor activity in the human brain with 11 C-labelled N-methylspiperone. Science 221: 1264-1266

    Article  CAS  Google Scholar 

  • Wall A, Bergstr öm M, Jacobsson E, Nilsson D, Antoni G, Frandberg P, Gustavsson SA, L ångstr öm B, Yates R (2005) Distribution of zolmitriptan into the CNS in healthy volunteers: a positron emission tomography study. Drugs R D 6:139-147

    Article  PubMed  CAS  Google Scholar 

  • Yamaguti K, Kuratsune H, Watanabe Y, Takahashi M, Nakamoto I, Machii T, Jacobson G, Onoe H, Matsumura K, Valind S, L ångstr öm B (1996) Acylcarnitine metabolism during fasting and after refeeding. Biochem Biophys Res Commun 225:740-746

    Article  PubMed  CAS  Google Scholar 

  • Yates R, Sorensen J, Bergstr öm M, Antoni G, Nairn K, Kemp J, L ångstr öm B, Dane A (2005) Dis-tribution of intranasal 11 C-zolmitriptan assessed by positron emission tomography. Cephalalgia 25:1103-1109

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Långström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Antoni, G., Långström, B. (2008). Radiopharmaceuticals: Molecular Imaging using Positron Emission Tomography. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging I. Handbook of Experimental Pharmacology, vol 185/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72718-7_9

Download citation

Publish with us

Policies and ethics