Skip to main content

Conditions for MPC Based Stabilization of Sampled-Data Nonlinear Systems Via Discrete-Time Approximations

  • Chapter
Assessment and Future Directions of Nonlinear Model Predictive Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 358))

Abstract

This paper is devoted to the stabilization problem of nonlinear continuous- time systems with piecewise constant control functions. The controller is to be computed by the receding horizon control method based on discrete-time approximate models. Multi-rate — multistep control is considered and both measurement and computational delays are allowed. It is shown that the same family of controllers that stabilizes the approximate discrete-time model also practically stabilizes the exact discrete-time model of the plant. The conditions are formulated in terms of the original continuoustime models and the design parameters so that they should be veri.able in advance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen H, Allgöwer F (1998) A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34:1205–1217

    Article  MATH  Google Scholar 

  2. Chen W H, Ballance D J, O’Reilly J (2000) Model predictive control of nonlinear systems: Computational burden and stability. IEE Proc Control Theory Appl 147:387–394

    Article  Google Scholar 

  3. DeNicolao G, Magni L, Scattolini R (1998) Stabilizing receding horizon control of nonlinear time-varying system. IEEE Trans. Automat. Control 43:1030–1036

    Article  MATH  MathSciNet  Google Scholar 

  4. De Nicolao G, Magni L, Scattolini R (2000) Stability and robustness of nonlinear receding horizon control. In: Allgöwer F, Zheng A (eds) Nonlinear Model Predic-tive Control. Progress in Systems and Control Theory. Birkhäuser Verlag, 3–22

    Google Scholar 

  5. Elaiw A M, Gyurkovics E (2005) Multirate sampling and delays in receding horizon stabilization of nonlinear systems. In: Proc. 16th IFAC World Congress, Prague

    Google Scholar 

  6. Findeisen R, Imsland L, Allgöwer F, Foss B A (2003) State and output feedback nonlinear model predictive control: An overview. European J Control 9:190–206

    Article  Google Scholar 

  7. Findeisen R, Allgöwer F (2004) Computational delay in nonlinear model predictive control. In: Proceedings of Int Symp Adv Control of Chemical Processes

    Google Scholar 

  8. Fontes F A C C (2001) A general framework to design stabilizing nonlinear model predictive controllers. Systems Control Lett. 42:127–143

    Article  MATH  MathSciNet  Google Scholar 

  9. Grimm G, Messina M J, Teel A R, Tuna S (2004) Examples when nonlinear model predictive control is nonrobust. Automatica 40:1729–1738

    Article  MATH  MathSciNet  Google Scholar 

  10. Grimm G, Messina M J, Teel A R, Tuna S (2005) Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans. Automat. Control 50:546–558

    Article  MathSciNet  Google Scholar 

  11. Grüne L, Nešić D (2003) Optimization based stabilization of sampled-data nonlinear systems via their approximate discrete-time models. SIAM J. Control Optim 42:98–122

    Article  MATH  MathSciNet  Google Scholar 

  12. Grüne L, Nešić D, Pannek J (2005) Model predictive control for nonlinear sampled-data systems. In: Proc of Int Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, Freudenstadt-Lauterbad

    Google Scholar 

  13. Gyurkovics É (1996) Receding horizon control for the stabilization of nonlinear uncertain systems described by differential inclusions. J. Math. Systems Estim. Control 6:1–16

    MathSciNet  Google Scholar 

  14. Gyurkovics E (1998) Receding horizon control via Bolza-type optimization. Systems Control Lett. 35:195–200

    Article  MATH  MathSciNet  Google Scholar 

  15. Gyurkovics É, Elaiw A M (2004) Stabilization of sampled-data nonlinear sys-tems by receding horizon control via discrete-time approximations. Automatica 40:2017–2028

    Article  MATH  MathSciNet  Google Scholar 

  16. Gyurkovics É, Elaiw A M(2006) A stabilizing sampled-data ℓ-step receding hori-zon control with application to a HIV/AIDS model. Differential Equations Dynam. Systems 14:323–352

    MathSciNet  Google Scholar 

  17. Ito K, Kunisch K (2002) Asymptotic properties of receding horizon optimal control problems. SIAM J. Control Optim. 40:1585–1610

    Article  MATH  MathSciNet  Google Scholar 

  18. Jadbabaie A, Hauser J (2001) Unconstrained receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 46:776–783

    Article  MATH  MathSciNet  Google Scholar 

  19. Jadbabaie A, Hauser J (2005) On the stability of receding horizon control with a general terminal cost. IEEE Trans. Automat. Control 50:674–678

    Article  MathSciNet  Google Scholar 

  20. Keerthi S S, Gilbert E G (1985) An existence theorem for discrete-time infinite-horizon optimal control problems. IEEE Trans. Automat. Control 30:907–909

    Article  MATH  MathSciNet  Google Scholar 

  21. Kwon W H, Han S H, Ahn Ch K (2004) Advances in nonlinear predictive control: A survey on stability and optimality. Int J Control Automation Systems 2:15–22

    Google Scholar 

  22. Magni L, Scattolini R (2004) Model predictive control of continuous-time nonlinear systems with piecewise constant control. IEEE Trans. Automat. Control 49:900–906.

    Article  MathSciNet  Google Scholar 

  23. Mayne D Q, Michalska H (1990) Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 35:814–824

    Article  MATH  MathSciNet  Google Scholar 

  24. Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M (2000) Constrained model predictive control: Stability and optimality. Automatica 36:789–814

    Article  MATH  MathSciNet  Google Scholar 

  25. Nešić D, Teel A R (2004) A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Trans. Automat. Control 49:1103–1122

    Article  MathSciNet  Google Scholar 

  26. Nešić D, Teel A R, Kokotovic P V(1999) Sufficient conditions for stabilization of sampled-data nonlinear systems via discrete-time approximation. Systems Control Lett. 38:259–270

    Article  MathSciNet  Google Scholar 

  27. Nesic D, Teel A R, Sontag E D (1999) Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems. Systems Control Lett. 38:49–60

    Article  MATH  MathSciNet  Google Scholar 

  28. Polushin I G, Marquez H J(2004) Multirate versions of sampled-data stabilization of nonlinear systems. Automatica 40:1035–1041

    Article  MATH  MathSciNet  Google Scholar 

  29. Parisini T, Sanguineti M, Zoppoli R (1998) Nonlinear stabilization by receding-horizon neural regulators. Int. J. Control 70:341–362

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gyurkovics, E., Elaiw, A.M. (2007). Conditions for MPC Based Stabilization of Sampled-Data Nonlinear Systems Via Discrete-Time Approximations. In: Findeisen, R., Allgöwer, F., Biegler, L.T. (eds) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72699-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72699-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72698-2

  • Online ISBN: 978-3-540-72699-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics