Skip to main content

UAV Path Planning Using Evolutionary Algorithms

  • Chapter
Innovations in Intelligent Machines - 1

Evolutionary Algorithms have been used as a viable candidate to solve path planning problems effectively and provide feasible solutions within a short time. In this work a Radial Basis Functions Artificial Neural Network (RBF-ANN) assisted Differential Evolution (DE) algorithm is used to design an off-line path planner for Unmanned Aerial Vehicles (UAVs) coordinated navigation in known static maritime environments. A number of UAVs are launched from different known initial locations and the issue is to produce 2-D trajectories, with a smooth velocity distribution along each trajectory, aiming at reaching a predetermined target location, while ensuring collision avoidance and satisfying specific route and coordination constraints and objectives. B-Spline curves are used, in order to model both the 2-D trajectories and the velocity distribution along each flight path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newcome, L.R.: Unmanned Aviation, a Brief History of Unmanned Aerial Vehi- cles. AIAA (2004)

    Google Scholar 

  2. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers (1991)

    Google Scholar 

  3. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  4. Gilmore, J.F.: Autonomous vehicle planning analysis methodology. Proceedings of the Association of Unmanned Vehicles Systems Conference. Washington, DC (1991)503-509

    Google Scholar 

  5. Uny Cao, Y., Fukunaga, A.S., Kahng, A.B.: Cooperative Mobile Robotics: Antecedents and Directions. Autonomous Robots 4 (1997) 7-27

    Article  Google Scholar 

  6. Fujimura, K.: Motion Planning in Dynamic Environments. Springer-Verlag, New York, NY, (1991)

    Google Scholar 

  7. Arai, T. and Ota, J. 1992. Motion planning of multiple robots. Proceedings of the IEEE/RSJ IROS (1992) 1761-1768

    Google Scholar 

  8. Shima, T., Rasmussen, S.J., Sparks, A.G.: UAV Cooperative Multiple Task Assignments using Genetic Algorithms. Proceedings of the 2005 American Con-trol Conference, June 8-10, Portland, OR, USA (2005)

    Google Scholar 

  9. Shima, T., Rasmussen, S.J., Sparks, A.G.: UAV Team Decision and Control using Efficient Collaborative Estimation. Proceedings of the 2005 American Control Conference, June 8-10, Portland, OR, USA (2005)

    Google Scholar 

  10. Mitchell, J.W. and Sparks, A.G.: Communication Issues in the Cooperative Control of Unmanned Aerial Vehicles. Proceedings of the Forty-First Annual Allerton Conference on Communication, Control, & Computing (2003)

    Google Scholar 

  11. Schumacher, C.: Ground Moving Target Engagement by Cooperative UAVs. Proceedings of the 2005 American Control Conference, June 8-10, Portland, OR, USA (2005)

    Google Scholar 

  12. Moitra, A., Mattheyses, R.M., Hoebel, L.J., Szczerba, R.J., Yamrom, B.: Mul-tivehicle reconnaissance route and sensor planning. IEEE Transactions on Aerospace and Electronic Systems, 37 (2003) 799-812

    Article  Google Scholar 

  13. Bortoff, S.: Path planning for UAVs. Proceedings of the Amer. Control Conf., Chicago, IL, (2000) 364-368

    Google Scholar 

  14. Szczerba, R.J., Galkowski, P., Glickstein, I.S., and Ternullo, N.: Robust algo-rithm for real-time route planning. IEEE Transactions on Aerospace Electronic Systems 36 (2000) 869-878

    Article  Google Scholar 

  15. Zheng, C., Li, L., Xu, F., Sun, F., Ding, M.: Evolutionary Route Planner for Unmanned Air Vehicles. IEEE Transactions on Robotics 21 (2005) 609-620

    Article  Google Scholar 

  16. Beard, R.W., McLain, T.W., Goodrich, M.A., Anderson, E.P.: Coordinated tar-get assignment and intercept for unmanned air vehicles. IEEE Transactions on Robotics and Automation, 18 (2002) 911-922

    Article  Google Scholar 

  17. Vandapel, N., Kuffner, J., Amidi, O.: Planning 3-D Path Networks in Unstruc-tured Environments. Proceedings of the IEEE International Conference on Robotics and Automation, ICRA (2005)

    Google Scholar 

  18. Dubins, L.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal position. American Journal of Math. 79 (1957) 497-516.

    Article  MATH  MathSciNet  Google Scholar 

  19. Shima, T., Schumacher, C.: Assignment of cooperating UAVs to simultaneous tasks using Genetic Algorithms. AIAA Guidance, Navigation, and Control Con-ference and Exhibit, San Francisco (2005)

    Google Scholar 

  20. Tang, Z., and Ozguner, U.: Motion Planning for Multi-Target Surveillance with Mobile Sensor Agents. IEEE Transactions on Robotics 21 (2005) 898-908

    Article  Google Scholar 

  21. Martinez-Alfaro H., and Gomez-Garcia, S.: Mobile robot path planning and tracking using simulated annealing and fuzzy logic control. Expert Systems with Applications 15 (1988) 421-429

    Article  Google Scholar 

  22. Nikolos, I.K., Tsourveloudis, N., and Valavanis, K.P.: Evolutionary Algorithm Based 3-D Path Planner for UAV Navigation. CD-ROM Proceedings of the 9th Mediterranean Conference on Control and Automation, Dubrovnik, Croatia (2001)

    Google Scholar 

  23. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C., Kostaras, A.: Evolutionary Algorithm based offline / online path planner for UAV navigation. IEEE Trans-actions on Systems, Man, and Cybernetics - Part B: Cybernetics 33 (2003) 898-912

    Article  Google Scholar 

  24. Mettler, B., Schouwenaars, T., How, J., Paunicka, J., and Feron E.: Autonomous UAV guidance build-up: Flight-test Demonstration and evaluation plan. Pro-ceedings of the AIAA Guidance, Navigation, and Control Conference, AIAA-2003-5744 (2003)

    Google Scholar 

  25. Richards, A., Bellingham, J., Tillerson, M., and How., J.: Coordination and control of UAVs. Proceedings of the AIAA Guidance, Navigation and Control Conference, Monterey, CA, (2002)

    Google Scholar 

  26. Schouwenaars, T., How, J., and Feron, E.: Decentralized Cooperative Trajectory Planning of multiple aircraft with hard safety guarantees. Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA-2004-5141 (2004)

    Google Scholar 

  27. Flint, M., Polycarpou, M., and Fernandez-Gaucherand, E.: Cooperative Control for Multiple Autonomous UAV’s Searching for Targets. Proceedings of the 41st IEEE Conference on Decision and Control (2002)

    Google Scholar 

  28. Gomez Ortega, J., and Camacho, E.F.: Mobile Robot navigation in a partially structured static environment, using neural predictive control. Control Eng. Practice 4 (1996) 1669-1679

    Google Scholar 

  29. Kwon, Y.D., and Lee, J.S.: On-line evolutionary optimization of fuzzy con-trol system based on decentralized population. Intelligent Automation and Soft Computing 6 (2000) 135-146

    Google Scholar 

  30. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer Publications (1999)

    Google Scholar 

  31. Smierzchalski, R.: Evolutionary trajectory planning of ships in navigation traffic areas. Journal of Marine Science and Technology 4 (1999) 1-6

    Article  Google Scholar 

  32. Smierzchalski, R., and Michalewicz Z.: Modeling of ship trajectory in collision situations by an evolutionary algorithm. IEEE Transactions on Evolutionary Computation 4 (2000) 227-241

    Article  Google Scholar 

  33. Sugihara, K., and Smith, J.: Genetic Algorithms for Adaptive Motion Planning of an Autonomous Mobile Robot. Proceedings of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Mon-terey, California (1997) 138-143

    Google Scholar 

  34. Sugihara, K., and Yuh, J.: GA-based motion planning for underwater robotic vehicles. UUST-10, Durham, NH (1997)

    Google Scholar 

  35. Nikolos, I.K., Brintaki, A.: Coordinated UAV Path Planning Using Differential Evolution. Proceedings of the 13th Mediterranean Conference on Control and Automation, IEEE, Limassol, Cyprus (2005)

    Google Scholar 

  36. Piegl, L., Tiller, W.: The NURBS Book. Springer (1997)

    Google Scholar 

  37. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, A Prac- tical Guide. Academic Press (1988)

    Google Scholar 

  38. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  39. Holland, J.H.: Adaptation in Natural and Artificial Systems. The MIT Press (1992)

    Google Scholar 

  40. Storn, R., and Price, K.: DE - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Space. ICSI, Technical Report TR-95-012 (1995)

    Google Scholar 

  41. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, a Practical Approach to Global Optimization. Springer-Verlag, Berlin Heidelberg (2005)

    MATH  Google Scholar 

  42. Hui-Yuan F., Lampinen J., Dulikravich G.S.: Improvements to Mutation Donor Formulation of Differential Evolution. Proceedings of EUROGEN 2003 confer-ence on Evolutionary Methods for Design, Optimization and Control, Applica-tions to Industrial and Societal Problems, CIMNE, Barcelona (2003)

    Google Scholar 

  43. Marse, K. and Roberts, S.D.: Implementing a portable FORTRAN uniform (0,1) generator. Simulation (1983) 41-135

    Google Scholar 

  44. Torczon, V., Trosset, M.W.: Using Approximations to Accelerate Engineering Design Optimization. NASA/CR-1998-208460, ICASE Report No. 98-33 (1998)

    Google Scholar 

  45. Giannakoglou, K.C.: Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Progress in Aerospace Sciences 38 (2002) 43-76

    Article  Google Scholar 

  46. Myers, R.H., Montgomery, D.C.: Responce Surface Methodology: Progress and Product in Optimization Using Designed Experiments. Wiley - Interscience, New York (1995)

    Google Scholar 

  47. Shyy, W., Papila, N., Vaidynathan, R., Tucker, K.: Global Design Optimization for Aerodynamics and Rocket Propulsion Components. Prog. Aerospace Sci. 37 (2001) 59-118

    Article  Google Scholar 

  48. Ratle, A.: Optimal Sampling Strategies for Learning a Fitness Model. Proceed-ings of the 1999 Congress on Evolutionary Computation (CEC99), Washington DC, USA (1999)

    Google Scholar 

  49. Haykin, S.: Neural Networks, a Comprehensive Foundation. Second Edition, Prentice Hall (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nikolos, I.K., Zografos, E.S., Brintaki, A.N. (2007). UAV Path Planning Using Evolutionary Algorithms. In: Chahl, J.S., Jain, L.C., Mizutani, A., Sato-Ilic, M. (eds) Innovations in Intelligent Machines - 1. Studies in Computational Intelligence, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72696-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72696-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72695-1

  • Online ISBN: 978-3-540-72696-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics