Skip to main content

Biologically Inspired Synchronization for Wireless Networks

  • Chapter
Advances in Biologically Inspired Information Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 69))

Fireflies exhibit a fascinating phenomenon of spontaneous synchronization that occurs in nature: at dawn, they gather on trees and synchronize progressively without relying on a central entity. The present chapter reviews this process by looking at experiments that were made on fireflies and the mathematical model of Mirollo and Strogatz, which provides key rules to obtaining a synchronized network in a decentralized manner. In this article challenges related to the implementation in ad hoc networks are addressed. In particular, the effects of transmission delays and the constraint that a node cannot receive and transmit at the same time are studied. A novel delay tolerant synchronization scheme, derived from the original firefly synchronization principle is presented. Simulation results show that an accuracy limited only by propagation delays is retained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blair K (1915) Nature 96:411-415

    Article  Google Scholar 

  2. Buck J, Buck E, Case J, Hanson F (1981) Journal of Comparative Physiology A 144:630-633

    Google Scholar 

  3. Buck J (1988) The Quarterly Review of Biology 63:265-289

    Article  Google Scholar 

  4. Camazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-Organization in Biological Systems. Princeton

    Google Scholar 

  5. Campbell S, Wang D, Jayaprakash C (1999) Neural Computation 11:1595-1619

    Article  Google Scholar 

  6. Ermentrout B (1991) Journal of Mathematical Biology 29:571-585

    Article  MATH  MathSciNet  Google Scholar 

  7. Ernst U, Pawelzik K, Geisel T (1967) Physical Review Letters 74:1570-1573

    Article  Google Scholar 

  8. Hong Y-W, Scaglione A (2003) Proc. IEEE Conference on Ultra Wideband Systems and Technologies 2003

    Google Scholar 

  9. Hopfield J, Herz A (1995) Proceedings of the National Academy of Sciences 92:6655-6662

    Article  Google Scholar 

  10. Hu A, Servetto S (2006) IEEE Transactions on Information Theory 52:2725-2748

    Article  MathSciNet  Google Scholar 

  11. IEEE 802.11 (1999) Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE

    Google Scholar 

  12. Laurent P (1917) Science 45:44

    Article  Google Scholar 

  13. Mathar R, Mattfeldt J (1996) SIAM Journal on Applied Mathematics 56:1094-1106

    Article  MATH  MathSciNet  Google Scholar 

  14. Mirollo R, Strogatz S (1990) SIAM Journal on Applied Mathematics 50:1645-1662

    Article  MATH  MathSciNet  Google Scholar 

  15. Otte D, Smiley J (1977) Biology of Behaviour 2:143-158

    Google Scholar 

  16. Peskin C (1975) Mathematical Aspects of Heart Physiology. New York: Courant Institute of Mathematical Sciences

    MATH  Google Scholar 

  17. Proakis J (1995) Digital Communications. McGraw-Hill

    Google Scholar 

  18. Ramírez-Ávila G.M. (2004) Synchronization Phenomena in Light-Controlled Oscillators. Université Libre de Bruxelles, Belgium

    Google Scholar 

  19. Richmond C (1930) Science 71:537-538

    Article  Google Scholar 

  20. Roberts L (1975) ACM SIGCOMM Computer Communication Review 5:28-42

    Article  Google Scholar 

  21. Strogatz S, Stewart I (1993) Scientific American 269:68-74

    Google Scholar 

  22. Timme M, Wolf F, Geisel T (2002) Physical Review Letters 89:154105

    Article  Google Scholar 

  23. Tyrrell A, Auer G, Bettstetter C (2006) Proc. International Conference on Wireless Communications, Networking, and Mobile Computing 2006

    Google Scholar 

  24. Werner-Allen G, Tewari G, Patel A, Welsh M, Nagpal R (2005) Proc. Conference on Embedded Networked Sensor Systems 2005

    Google Scholar 

  25. Winfree A (1967) Journal of Theoretical Biology 16:15-42

    Article  Google Scholar 

  26. Yeung M, Strogatz S (1999) Physical Review Letters 82:648-651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tyrrell, A., Auer, G., Bettstetter, C. (2007). Biologically Inspired Synchronization for Wireless Networks. In: Dressler, F., Carreras, I. (eds) Advances in Biologically Inspired Information Systems. Studies in Computational Intelligence, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72693-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72693-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72692-0

  • Online ISBN: 978-3-540-72693-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics