Skip to main content

Living on Sulfate: Three-Dimensional Structure and Spectroscopy of Adenosine 5´-Phosphosulfate Reductase and Dissimilatory Sulfite Reductase

  • Conference paper
Microbial Sulfur Metabolism

The reduction of sulfate to sulfide and the reverse reaction are widespread biological processes. Hereby, microorganisms play a central role. Plants also reduce sulfate for the purpose of biosynthesis, and both plants and animals convert reduced sulfur compounds to sulfate. Sulfate respiration is used for energy conservation by strictly anaerobic bacteria and archaea. The redox equivalents generated by the oxidation of organic compounds are transferred to sulfate as the terminal electron acceptor. There are three key enzymes localized in the cytoplasm or at the cytoplasmic aspect of the inner membrane: ATP sulfurylase (ATPS), adenosine 5´-phosphosulfate reductase (APSR), and dissimilatory sulfite reductase (SIR). Sulfate (S6+) cannot be directly reduced by dihydrogen or organic acids, it has to be activated to adenosine 5´-phosphosulfate (APS) catalyzed by ATPS. The enzyme APSR (cofactors flavin adenine dinucleotide, [4Fe4S]) catalyzes the conversion of APS to sulfite (S4+) and AMP, followed by the complex multicomponent enzyme SIR (cofactors siroheme, [4Fe4S]) which catalyzes the reduction of sulfite (S4+) to sulfide (S2?). In this contribution we present the three-dimensional structures of APSR from Archaeoglobus fulgidus and of catalytically relevant reaction intermediates. In addition, we discuss spectroscopic and structural data of SIR purified from this organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach-Richter L, Gupta R, Stetter, KO, Woese CR (1987) Were the original eubacteria thermophiles? Syst Appl Microbiol 9:34–39.

    CAS  PubMed  Google Scholar 

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243.

    Article  CAS  PubMed  Google Scholar 

  • Beinert H, Holm RH, Münck E (1997) Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659.

    Article  CAS  PubMed  Google Scholar 

  • Belinsky MI (1996) Exchange model of the [Fe4S4]-Fe active site of sulfite reductase. Chem Phys 201:343–356.

    Article  Google Scholar 

  • Büchert T, Fritz G, Kroneck, PMH (1999) Towards the natural electron donor of adenosine-5s-phosphosulfate (APS) reductase from Desulfovibrio desulfuricans Essex. In: Ghisla S, Kroneck PMH, Macheroux P, Sund H (eds) Flavins and flavoproteins. Rudolf Weber Agency for Scientific Publications, Berlin, pp 803–806.

    Google Scholar 

  • Cameron EM (1982) Sulfate and sulfate reduction in the early Precambrian oceans. Nature 296:145–148.

    Article  CAS  Google Scholar 

  • Christner JA, Münck E, Kent TA, Janick PA, Salerno JC, Siegel L M (1984) Exchange coupling between siroheme and [4Fe-4S] cluster in E. coli sulfite reductase. Mössbauer studies and coupling models for a 2-electron reduced enzyme state and complexes with sulfide. J Am Chem Soc 106:6786–6794.

    Article  CAS  Google Scholar 

  • Cort JR, Santhana Mariappan SV, Kim C-Y, Park M S, Peat T S, Waldo G S, Terwilliger T C, Kennedy MA (2001) Solution structure of Pyrobaculum aerophilium DsrC, an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase. Eur J Biochem 268:5842–5850.

    Article  CAS  PubMed  Google Scholar 

  • Crane BR, Siegel LM, Getzoff ED (1995) Sulfite reductase at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Dahl C, Trüper HG (2001) Sulfite reductase and APS reductase from Archaeoglobus fulgidus. Methods Enzymol 331:472–441.

    Google Scholar 

  • Dahl C, Speich N, Trüper HG (1994) Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol 243:331–352.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Büchert T, Huber H, Stetter KO, Kroneck PMH (2000) reductases from archaea and bacteria are 1:1 alphabeta-heterodimeric iron-sulfur flavoenzymes. High similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett 473:63–66.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Büchert T, Kroneck PMH (2002a) The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenosine 5b-phosphosulfate reductases. Evidence for flavin-catalyzed reduction of adenosine 5v-phosphosulfate. J Biol Chem 277:26066–26073.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Roth A, Schiffer A, Büchert T, Bourenkov G, Bartunik HD, Huber H, Stetter KO, Kroneck PMH, Ermler U (2002b) Crystal structure of the adenosine 5´-phosphosulfate reductase from the hyperthermophilic Archaeon Archaeoglobus fulgidus at 1.6 Å resolution. Proc Natl Acad Sci USA 99:1836–1841.

    Article  CAS  PubMed  Google Scholar 

  • Fritz G, Einsle O, Rudolf M, Schiffer M, Kroneck PMH (2005) Key bacterial multi-centered metal enzymes involved in nitrate and sulfate respiration. J Mol Microbiol Biotechnol 10:223–233.

    Article  CAS  PubMed  Google Scholar 

  • Hansen TA (1994) Metabolism of sulfate-reducing prokaryotes. Antonie Van Leeuwenhoek 66:165–185.

    Article  CAS  PubMed  Google Scholar 

  • Hittel DS, Voordouw G (2000) Overexpression, purification and immunodetection of DsrD from Desulfovibrio vugaris (Hildenborough). Antonie Van Leeuwenhoek 77:13–22.

    Article  Google Scholar 

  • Karkhoff-Schweizer RR, Huber D P, Voordouw G (1995) Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol 61:290–296.

    CAS  PubMed  Google Scholar 

  • Kroneck PMH (2005) The biogeochemical cycles of the elements and the evolution of life. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in biological systems, vol. 43. Taylor & Francis, Baton Rouge, pp 1–7.

    Google Scholar 

  • Lampreia J, Pereira AS, Moura JJG (1994) Adenosine 5L-phosphosulfate reductase from sulfate-reducing bacteria. Methods Enzymol. 243:241–260.

    Article  CAS  Google Scholar 

  • Lancaster CRD (2003) Wolinella succinogenes quinol:fumarate reductase and its comparison to E. coli succinate:quinone reductase. FEBS Lett 555:21–28.

    Article  CAS  PubMed  Google Scholar 

  • Lee J-P, LeGall J, Peck HD (1973) Isolation of assimilatory- and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J Bacteriol 115:529–542.

    CAS  PubMed  Google Scholar 

  • LeGall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 587–639.

    Google Scholar 

  • Lipmann F (1958) Biological sulfate activation and transfer: studies on a mechanism of group activation and its role in biosynthesis are described. Science 128:575–580.

    Article  CAS  PubMed  Google Scholar 

  • Lui S M, Soriano A, Cowan JA (1994) Electronic properties of the dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough): comparitative studies of optical spectra and relative reduction potentials for the [Fe4S4]-sirohaem prostetic centers. Biochem J 304:441–447.

    CAS  PubMed  Google Scholar 

  • Mander GJ, Weiss MS, Hedderich R, Kahnt J, Ermler U, Warkentin E (2005) X-ray structure of the e-subunit of a dissimilatory sulfite reductase: fixed and flexible C-terminal arms. FEBS Lett 579:4600–4604.

    Article  CAS  PubMed  Google Scholar 

  • Massey V, Müller F, Feldberg R, Schuman M, Sullivan PA, Howell LG, Mayhew SG, Matthews RG, Foust GP (1969) The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem.244: 3999–4006.

    CAS  PubMed  Google Scholar 

  • Matias PM, Pereira IAC, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89:292–329.

    Article  CAS  PubMed  Google Scholar 

  • Michaels GB, Davidson JT, Peck HD Jr (1970) A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate reductase from Desulfovibrio vulgaris. Biochem Biophys Res Commun 39:321–328.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno N, Voordouw G, Miki K, Sarai A, Higuchi Y (2003) Crystal structure of dissimilatory sulfite reductase D (DsrD) protein–possible interaction with B- and Z-DNA by Its winged-helix motif. Structure 11:1133–1140.

    Article  CAS  PubMed  Google Scholar 

  • Moura I, LeGall J, Lino AR, Peck HD, Fauque G, Xavier AV, DerVartanian DV, Moura JJG, Huynh BH (1988) Characterisation of two dissimilatory sulfite reductases from the sulfate-reducing bacteria. Mössbauer and EPR studies. J Am Chem Soc 110:1075–1082.

    Article  CAS  Google Scholar 

  • Peck HD Jr (1959) The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc Natl Acad Sci USA 45:701–708.

    Article  CAS  PubMed  Google Scholar 

  • Pierik AJ, Hagen WR (1991) S = 9/2 EPR signals are evidence against coupling between the siroheme and the Fe/S cluster prosthetic groups in Desulfovibrio vulgaris (Hildenborough) dissimilatory sulfite reductase. Eur J Biochem 195:505–516.

    Article  CAS  PubMed  Google Scholar 

  • Pires RH, Venceslau SS, Morais F, Texeira M, Xavier AV, Pereira IAC (2006) Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex–a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249–262.

    Article  CAS  PubMed  Google Scholar 

  • Schidlowski M, Hayes JM, Kaplan IR (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 149–186.

    Google Scholar 

  • Schiffer A (2004) Structural and functional investigations on multi-site metallo enzymes of the biological sulfur cycle. Dissertation, Universität Konstanz.

    Google Scholar 

  • Schiffer A, Fritz G, Kroneck PMH, Ermler U (2006) Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5f-phosphosulfate reductase based on the structural characterization of different enzymatic states. Biochemistry 45:2960–2967.

    Article  CAS  PubMed  Google Scholar 

  • Speich N, Dahl C, Heisig P, Klein A, Lottspeich, F, Stetter KO, Trüper HG (1994) Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron-sulphur flavoproteins. Microbiology 140:1273–1284.

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extreme thermophilic sulfate reducers: Evidence for a novel branch of archaebacteria. Science 236:822–824.

    Article  CAS  PubMed  Google Scholar 

  • Steuber J, Kroneck PMH (1998) Desulfoviridin, the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex): new structural and functional aspects of the membranous enzyme. Inorg Chim Acta 275–276:52–57.

    Article  Google Scholar 

  • Steuber J, Arendsen AF, Hagen WR, Kroneck PMH (1995) Molecular properties of the dissimilatory sulfite reductase from Desulfovibrio desulfuricans (Essex) and comparison with the enzyme from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 233:873–879.

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180.

    CAS  PubMed  Google Scholar 

  • Verhagen MFJM, Kooter IM, Wolbert RBG, Hagen WR (1994) On the iron-sulfur cluster of adenosine phosphosulfate reductase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 221:831–837.

    Article  CAS  PubMed  Google Scholar 

  • Wolfe BM, Lui SM, Cowan JA (1994) Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 223:79–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fritz, G., Schiffer, A., Behrens, A., Büchert, T., Ermler, U., Kroneck, P.M.H. (2008). Living on Sulfate: Three-Dimensional Structure and Spectroscopy of Adenosine 5´-Phosphosulfate Reductase and Dissimilatory Sulfite Reductase. In: Dahl, C., Friedrich, C.G. (eds) Microbial Sulfur Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72682-1_2

Download citation

Publish with us

Policies and ethics