Acquisition of OWL DL Axioms from Lexical Resources

  • Johanna Völker
  • Pascal Hitzler
  • Philipp Cimiano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4519)


State-of-the-art research on automated learning of ontologies from text currently focuses on inexpressive ontologies. The acquisition of complex axioms involving logical connectives, role restrictions, and other expressive features of the Web Ontology Language OWL remains largely unexplored. In this paper, we present a method and implementation for enriching inexpressive OWL ontologies with expressive axioms which is based on a deep syntactic analysis of natural language definitions. We argue that it can serve as a core for a semi-automatic ontology engineering process supported by a methodology that integrates methods for both ontology learning and evaluation. The feasibility of our approach is demonstrated by generating complex class descriptions from Wikipedia definitions and from a fishery glossary provided by the Food and Agriculture Organization of the United Nations.


Transformation Rule Description Logic Inductive Logic Program Formal Concept Analysis Lexical Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W3C: Web Ontology Language, OWL (2004),
  2. 2.
    Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Lin, D.: Dependency-based evaluation of MINIPAR. In: Proceedings of the Workshop on the Evaluation of Parsing Systems, Granada, Spain (May 1998)Google Scholar
  4. 4.
    Terziev, I., Kiryakov, A., Manov, D.: Base Upper-Level Ontology (BULO) guidance. SEKT deliverable 1.8.1, Ontotext Lab, Sirma AI EAD, Ltd. (2004)Google Scholar
  5. 5.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th International Conference on Computational Linguistics, pp. 539–545 (1992)Google Scholar
  6. 6.
    Poesio, M., Ishikawa, T., im Walde, S.S., Vieira, R.: Acquiring lexical knowledge for anaphora resolution. In: Proceedings of the 3rd Conference on Language Resources and Evaluation (2002)Google Scholar
  7. 7.
    Guarino, N., Welty, C.A.: A formal ontology of properties. In: Knowledge Acquisition, Modeling and Management, pp. 97–112 (2000),
  8. 8.
    Amoia, M., Gardent, C.: Adjective based inference. In: Proceedings of the EACL Workshop on Knowledge and Reasoning for Answering Questions (KRAQ’06), Trento, Italy (April 2006)Google Scholar
  9. 9.
    Guthrie, L., Slator, B.M., Wilks, Y., Bruce, R.: Is there content in empty heads? In: Proceedings of the 13th conference on Computational linguistics, Helsinki, Finland, pp. 138–143. Association for Computational Linguistics, Morristown (1990)CrossRefGoogle Scholar
  10. 10.
    Chodorow, M., Byrd, R.J., Heidorn, G.E.: Extracting semantic hierarchies from a large on-line dictionary. In: Proceedings of the 23rd annual meeting on Association for Computational Linguistics, pp. 299–304 (1985)Google Scholar
  11. 11.
    Klavans, J., Popper, S., Passonneau, B.: Tackling the internet glossary glut: Automatic extraction and evaluation of genus phrases. In: Proceedings of the SIGIR’03 Workshop on Semantic Web, Toronto, Canada (2003)Google Scholar
  12. 12.
    Völker, J., Vrandečić, D., Sure, Y.: Automatic evaluation of ontologies (AEON). In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 716–731. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Schlobach, S.: Debugging and semantic clarification by pinpointing. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Haase, P., Völker, J.: Ontology learning and reasoning – dealing with uncertainty and inconsistency. In: Proc. of the ISWC Workshop on Uncertainty Reasoning for the Semantic Web (URSW), Galway, Ireland, pp. 45–55 (2005)Google Scholar
  15. 15.
    Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  17. 17.
    Lin, D., Pantel, P.: DIRT–SBT–discovery of inference rules from text. In: Knowledge Discovery and Data Mining, pp. 323–328 (2001)Google Scholar
  18. 18.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Tablan, V., Polajnar, T., Cunningham, H., Bontcheva, K.: User-friendly ontology authoring using a controlled language. In: Proceedings of the 5th International Conference on Language Resources and Evaluation, LREC’06 (2006)Google Scholar
  20. 20.
    Bernstein, A., Kaufmann, E., Göhring, A., Kiefer, C.: Querying ontologies: A controlled english interface for end-users. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 112–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Pease, A., Murray, W.: An English to Logic Translator for ontology-based knowledge representation languages. In: Proceedings of the International Conference on Natural Language Processing and Knowledge Engineering, pp. 777–783 (2003)Google Scholar
  22. 22.
    Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto Controlled English meets the challenges of knowledge representation, reasoning, interoperability and user interfaces. In: Proceedings of FLAIRS’06, Melbourne Beach, Florida (2006)Google Scholar
  23. 23.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer, Heidelberg (2006)Google Scholar
  24. 24.
    Hovy, E., Philpot, A., Klavans, J., Germann, U., Davis, P., Popper, S.: Extending metadata definitions by automatically extracting and organizing glossary definitions. In: Proceedings of the 2003 annual national conference on Digital government research, Boston, MA, pp. 1–6. Digital Government Research Center (2003)Google Scholar
  25. 25.
    Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic extraction of semantic relationships for WordNet by means of pattern learning from Wikipedia. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 67–79. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Suh, S., Halpin, H., Klein, E.: Extracting common sense knowledge from Wikipedia. In: Proceedings of the Workshop on Web Content Mining with Human Language Technologies at ISWC’06 (2006)Google Scholar
  27. 27.
    Weber, N., Buitelaar, P.: Web-based ontology learning with ISOLDE. In: Proc. of the ISWC Workshop on Web Content Mining with Human Language Technologies, Athens, Georgia (2006)Google Scholar
  28. 28.
    Gardent, C., Jacquey, E.: Lexical reasoning. In: Proceedings of the International Conference on Natural Language Processing (ICON’03), Mysore, India (December 2003)Google Scholar
  29. 29.
    Lisi, F.A., Esposito, F.: ILP meets knowledge engineering: A case study. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 209–226. Springer, Heidelberg (2005)Google Scholar
  30. 30.
    Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Concept formation in expressive description logics. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 99–110. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Johanna Völker
    • 1
  • Pascal Hitzler
    • 1
  • Philipp Cimiano
    • 1
  1. 1.Institute AIFB, University of KarlsruheGermany

Personalised recommendations