Advertisement

The SPARQL Query Graph Model for Query Optimization

  • Olaf Hartig
  • Ralf Heese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4519)

Abstract

The Semantic Web community has proposed several query languages for RDF before the World Wide Web Consortium started to standardize SPARQL. Due to the declarative nature of the query language, a query engine should be responsible to choose an efficient evaluation strategy. Although all RDF repositories provide query capabilities, some of them require manual interaction to reduce query execution time by several orders of magnitude.

In this paper, we propose the SPARQL query graph model (SQGM) supporting all phases of query processing. On top of the SQGM we defined transformations rules to simplify and to rewrite a query. Based on these rules we developed heuristics to achieve an efficient query execution plan. Experiments illustrate the potential of our approach.

Keywords

Query Processing Transformation Rule Query Language Graph Pattern Query Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The RDFSuite: Managing Voluminous RDF Description Bases. In: Decker, S., Fensel, D., Sheth, A.P., Staab, S. (eds.) Proceedings of the Second International Workshop on the Semantic Web, pp. 1–13 (2001)Google Scholar
  2. 2.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and Retrieval in Jena2. In (2003)Google Scholar
  4. 4.
    Beckett, D.: The Design and Implementation of the Redland RDF Application Framework. In: Proceedings of the Tenth International Conference on World Wide Web, ACM Press, New York (2001)Google Scholar
  5. 5.
    Pirahesh, H., Hellerstein, J.M., Hasan, W.: Extensible/rule based query rewrite optimization in Starburst. SIGMOD Records 21(2), 39–48 (1992), doi:10.1145/141484.130294CrossRefGoogle Scholar
  6. 6.
    Heese, R.: Query graph model for sparql. In: International Workshop on Semantic Web Applications: Theory and Practice. Proceedings of ER workshops (November 2006)Google Scholar
  7. 7.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Candidate Recommendation (2006), http://www.w3.org/TR/rdf-sparql-query/
  8. 8.
    Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems. Journal of Web Semantics 3(2), 158–182 (2005), http://www.websemanticsjournal.org/ps/pub/2005-16 Google Scholar
  9. 9.
    Cyganiak, R.: A relational algebra for SPARQL. Technical Report HPL-2005-170, HP Laboratories Bristol (2005)Google Scholar
  10. 10.
    Frasincar, F., Houben, G.J., Vdovjak, R., Barna, P.: RAL: an Algebra for Querying RDF. In: Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E. (eds.) Proceedings of the 13th International conference on World Wide Web, ACM Press, New York (2004)Google Scholar
  11. 11.
    Serfiotis, G., Koffina, I., Christophides, V., Tannen, V.: Containment and Minimization of RDF/S Query Patterns. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 607–623. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Matono, A., Amagasa, T., Yoshikawa, M., Uemura, S.: A path-based relational RDF database. In: CRPIT ’39: Proceedings of the sixteenth Australasian conference on Database technologies, Newcastle, Australia, pp. 95–103. Australian Computer Society, Inc. (2005)Google Scholar
  14. 14.
    Christophides, V., Karvounarakis, G., Scholl, D.P.M., Tourtounis, S.: Optimizing Taxonomic Semantic Web Queries Using Labeling Schemes. Web Semantics: Science, Services and Agents on the World Wide Web 1(2), 207–228 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Olaf Hartig
    • 1
  • Ralf Heese
    • 1
  1. 1.Humboldt-Universität zu Berlin, Department of Computer Science 

Personalised recommendations