Squirrel: An Advanced Semantic Search and Browse Facility

  • Alistair Duke
  • Tim Glover
  • John Davies
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4519)


Search is seen as a key application that can benefit from semantic technology with improvements to recall and precision over conventional Information Retrieval techniques. This paper describes Squirrel, a search and browse tool that provides access to semantically annotated data. Squirrel provides combined keyword based and semantic searching. The intention is to provide a balance between the speed and ease of use of simple free text search and the power of semantic search. In addition, the ontological approach provides the user with a much richer browsing experience. Squirrel builds on and integrates a number of semantic technology components. These include machine learning and information extraction components which generate, extract and manage semantic metadata contained within and about textual documents at index time. A number of run-time components have also been integrated to deliver an enhanced user experience which goes beyond merely presenting a list of documents as a query response. The tool has been trialled and evaluated in two case studies and we report early results from this exercise, revealing promising results.


  1. 1.
    Bontcheva, K.: Generating tailored textual summaries from ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 531–545. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proceedings of NAACL, Seattle, USA, April 2000, pp. 26–33 (2000)Google Scholar
  3. 3.
    Christiansson, P.: Heuristic Evaluation - A System Checklist. Xerox Corporation, Ann Arbor (2000)Google Scholar
  4. 4.
    Fortuna, B., Mladenič, D., Grobelnik, M.: Semi-automatic construction of topic ontologies. In: Ackermann, M., Berendt, B., Grobelnik, M., Hotho, A., Mladenič, D., Semeraro, G., Spiliopoulou, M., Stumme, G., Svátek, V., van Someren, M. (eds.) EWMF 2005 and KDO 2005. LNCS (LNAI), vol. 4289, pp. 121–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Glover, T., Davies, J.: Integrating Device Independence and User Profiles on the Web. BT Technology Journal 23(3) (2005)Google Scholar
  6. 6.
    Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: A browser for heterogeneous semantic web repositories. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 272–285. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ Description Logic to Disjunctive Datalog Programs. In: Dubois, D., Welty, C., Williams, M.A. (eds.) Proc. of the 9th Int. Conf. on Knowledge Representation and Reasoning (KR2004), pp. 152–162. AAAI Press, Menlo Park (2004)Google Scholar
  8. 8.
    Jansen, B.J., Spink, A., Saracevic, T.: Real life, real users, and real needs: A study and analysis of user queries on the web. Information Processing and Management 36(2), 207–227 (2000)CrossRefGoogle Scholar
  9. 9.
    Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – A pragmatic semantic repository for OWL. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan, Z., Sheng, Q.Z. (eds.) WISE-WS 2005. LNCS, vol. 3807, pp. 182–192. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Neilsen, J., Molich, R.: Heuristic Evaluation of User Interfaces. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Monterey, California, United States, pp. 373–380 (1992)Google Scholar
  11. 11.
    Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., Kirilov, A.: KIM - a semantic platform for information extaction and retrieval. Journal of Natural Language Engineering 10(3-4), 375–392 (2004)CrossRefGoogle Scholar
  12. 12.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, Cambridge (2000)Google Scholar
  13. 13.
    Starz, J., Kettler, B., Haglich, P., Losco, J., Edwards, G., Hoffman, M.: The concept object web for knowledge management. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 1041–1049. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Wharton, C., et al.: Applying Cognitive Walkthroughs to more Complex User Interfaces: Experiences, Issues, and Recommendations. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Monterey, California, United States (1992)Google Scholar
  15. 15.
    Xue, G., Zeng, H., Chan, Z., Ma, W., Zhang, H., Lu, C.: Implicit link analysis for small Web search. In: SIGIR’03, Toronto, Canada, July 28-August 1 (2003)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Alistair Duke
    • 1
  • Tim Glover
    • 1
  • John Davies
    • 1
  1. 1.Next Generation Web Research Group, BT Group, Adastral Park, IpswichUK

Personalised recommendations