Compound-Specific Isotope Analysis (CSIA) to Characterise Degradation Pathways and to Quantify In-Situ Degradation of Fuel Oxygenates and Other Fuel-Derived Contaminants

  • Mònica Rosell
  • Max M. Häggblom
  • Hans-Hermann Richnow
Part of the The Handbook of Environmental Chemistry book series (HEC)


Isotope fractionation of fuel oxygenates has been employed as an indicator for monitoring in-situ degradation in the field. For quantification of in-situ degradation, the Rayleigh concept can be applied. The selection of an appropriate isotope enrichment factor (ε) that is representative of the biogeochemical conditions governing the microbial degradation process in the field is crucial for quantification. Therefore, the biogeochemistry of contaminated aquifers has to be taken into account in the development of isotope strategies in assessment and monitoring operations. In addition, controlled microcosms studies are needed to determine the extent of isotope fractionation under different conditions. The simultaneous analysis of carbon and hydrogen isotope composition of fuel oxygenates in a two-dimensional isotope approach opens opportunities for analysis of the predominant degradation process in the field and can be used to select an appropriate fractionation factor. In this contribution we summarise the concept of isotope fractionation of fuel oxygenates to assess in-situ degradation with respect to analytical techniques, recent progress on isotope fractionation in laboratory studies, the concept of two-dimensional isotope analysis, and experience from field studies.


MTBE ETBE fuel oxygenates CSIA (compound-specific stable isotope analysis) In-situ biodegradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Squillace PJ, Pankow JF, Korte NE, Zogorski JS (1997) Environ Toxicol Chem 16:1836Google Scholar
  2. 2.
    Moran MJ, Zogorski JS, Squillace PJ (2005) Ground Water 43:615Google Scholar
  3. 3.
    Schmidt TC, Morgenroth E, Schirmer M, Effenberger M, Haderlein SB (2002) In: Diaz AF, Drogos DL (eds) Oxygenates in gasoline: environmental aspects. ACS Symposium Series. American Chemical Society, Washington, DC, p 58Google Scholar
  4. 4.
    Rosell M, Lacorte S, Ginebreda A, Barcelo D (2003) J Chromatogr A 995:171Google Scholar
  5. 5.
    Shih T, Rong Y, Harmon T, Suffet M (2004) Environ Sci Technol 38:42Google Scholar
  6. 6.
    Martienssen M, Fabritius H, Kukla S, Balcke GU, Hasselwander E, Schirmer M (2006) J Contam Hydrol 87:37Google Scholar
  7. 7.
    Schirmer M, Butler BJ, Barker JF, Church CD, Schirmer K (1999) Phys Chem Earth B 24:557Google Scholar
  8. 8.
    Wilson JT, Kaiser PM, Adair C (2005) EPA report 600-R-04-179. US Environmental Protection Agency, Ada, Oklahoma, p 74Google Scholar
  9. 9.
    Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) J Contam Hydrol 75:215Google Scholar
  10. 10.
    Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Anal Bioanal Chem 378:283Google Scholar
  11. 11.
    Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W, Richnow HH (1999) Environ Microbiol 1:409Google Scholar
  12. 12.
    Richnow HH, Annweiler E, Michaelis W, Meckenstock RU (2003) J Contam Hydrol 65:101Google Scholar
  13. 13.
    Richnow HH, Meckenstock RU, Reitzel LA, Baun A, Ledin A, Christensen TH (2003) J Contam Hydrol 64:59Google Scholar
  14. 14.
    Morasch B, Richnow HH, Schink B, Meckenstock RU (2001) Appl Environ Microbiol 67:4842Google Scholar
  15. 15.
    Morasch B, Richnow HH, Schink B, Vieth A, Meckenstock RU (2002) Appl Environ Microbiol 68:5191Google Scholar
  16. 16.
    Smallwood BJ, Philp RP, Burgoyne TW, Allen JD (2001) Environ Forensics 2:215Google Scholar
  17. 17.
    Smallwood BJ, Philp RP, Allen JD (2002) Org Geochem 33:149Google Scholar
  18. 18.
    O’Sullivan G, BoshoffG, Downey A, KalinRM (2003) In: MagarVS, KelleyME (eds) In situ and on-site bioremediation 2003. Proceedings of the 7th international in situ and on-site bioremediation symposium. Battelle, Orlando, FloridaGoogle Scholar
  19. 19.
    Wilson JT, Kolhatkar R, Kuder T, Philp P, Daugherty SJ (2005) Ground Water Monit Remed 25:108Google Scholar
  20. 20.
    Gonfiantini R, Stichler W, Rozanski K (1995) Reference and intercomparison materi-als for stable isotopes of light elements. Proceedings of a consultants meeting, Vienna, 1-3 December 1993, IAEA-TECDOC-825. International Atomic Energy Agency, Vi-enna, p 13Google Scholar
  21. 21.
    Rayleigh JWS (1896) Philos Mag 42:493Google Scholar
  22. 22.
    Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Plant Soil 62:413Google Scholar
  23. 23.
    Kolhatkar R, Kuder T, Philp P, Allen J, Wilson JT (2002) Environ Sci Technol 36:5139Google Scholar
  24. 24.
    Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU (2004) Environ Sci Technol 38:617Google Scholar
  25. 25.
    Deutsches Institut für Normung (1985) DIN 38402 – Teil 13: Probenahme aus Grund- wasserleitern. This publication is about German standard methods for the examination of water, waste water and sludge; general information (group A); sampling from aquifers (A 13). Deutsches Institut für Normung (DIN), Berlin, GermanyGoogle Scholar
  26. 26.
    US Environmental Protection Agency (1986) RCRA ground-water monitoring tech-nical enforcement document, 0SWER-9950.1. Office of Solid Waste and Emergency Response, Washington, DCGoogle Scholar
  27. 27.
    Schmidt TC, Duong H-A, Berg M, Haderlein SB (2001) Analyst 126:405Google Scholar
  28. 28.
    White H, Lesnik B, Wilson J (2002) Analytical methods for oxygenates. L.U.S.T.Line Bulletin 42. New England Interstate Water Pollution Control Commission, Lowell, MA,, last visited: 13 April 2007
  29. 29.
    Meier-Augenstein W (1999) J Chromatogr A 842:351Google Scholar
  30. 30.
    Matthews DE, Hayes JM (1978) Anal Chem 50:1465Google Scholar
  31. 31.
    Merritt DA, Freeman KH, Ricci MP, Studley SA, Hayes JM (1995) Anal Chem 67: 2461Google Scholar
  32. 32.
    Hener U, Brand WA, Hilkert AW, Juchelka D, Mosandl A, Podebrad F (1998) Z Lebensm Unters Forsch A 206:230Google Scholar
  33. 33.
    Hilkert AW, Douthitt CB, Schluter HJ, Brand WA (1999) Rapid Commun Mass Spectrom 13:1226Google Scholar
  34. 34.
    Thermo Electron Corporation (2004) Finnigan GC-C/TC III. TEC, Bremen, Germany, last visited: 13 April 2007
  35. 35.
    Schmidt TC (2003) TRAC-Trend Anal Chem 22:776Google Scholar
  36. 36.
    Atienza J, Aragon P, Herrero MA, Puchades R, Maquieira A (2005) Crit Rev Anal Chem 35:317Google Scholar
  37. 37.
    Gray JR, Lacrampe-Couloume G, Gandhi D, Scow KM, Wilson RD, Mackay DM, Lollar BS (2002) Environ Sci Technol 36:1931Google Scholar
  38. 38.
    Somsamak P, Richnow HH, Häggblom MM (2005) Environ Sci Technol 39:103Google Scholar
  39. 39.
    Somsamak P, Richnow HH, Häggblom MM (2006) Appl Environ Microbiol 72:1157–1163Google Scholar
  40. 40.
    Rosell M, Barcelo D, Rohwerder T, Breuer U, Gehre M, Richnow HH (2007) Environ Sci Technol 41:2036Google Scholar
  41. 41.
    Hunkeler D, Butler BJ, Aravena R, Barker JF (2001) Environ Sci Technol 35:676Google Scholar
  42. 42.
    Zwank L, Berg M, Schmidt TC, Haderlein SB (2003) Anal Chem 75:5575Google Scholar
  43. 43.
    Jochmann MA, Blessing M, Haderlein SB, Schmidt TC (2006) Rapid Commun Mass Spectrom 20:3639–3648Google Scholar
  44. 44.
    Deeb RA, Scow KM, Alvarez-Cohen L (2000) Biodegradation 11:171Google Scholar
  45. 45.
    Fayolle F, Vandecasteele JP, Monot F (2001) Appl Microbiol Biotechnol 56:339Google Scholar
  46. 46.
    Schmidt TC, Schirmer M, Weiß H, Haderlein SB (2004) J Contam Hydrol 70:173Google Scholar
  47. 47.
    Nakatsu CH, Hristova K, Hanada S, Meng XY, Hanson JR, Scow KM, Kamagata Y (2006) Int J Syst Evol Microbiol 56:983Google Scholar
  48. 48.
    Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Appl Environ Microbiol 67:5601Google Scholar
  49. 49.
    Zaitsev GM, Uotila JS, Häggblom MM (2007) Appl Microbiol Biotechnol 74:1092Google Scholar
  50. 50.
    Pruden A, Suidan M (2004) Biodegradation 15:213Google Scholar
  51. 51.
    Rohwerder T, Breuer U, Benndorf D, Lechner U, Muller RH (2006) Appl Environ Microbiol 72:4128Google Scholar
  52. 52.
    Francois A, Mathis H, Godefroy D, Piveteau P, Fayolle F, Monot F (2002) Appl Environ Microbiol 68:2754Google Scholar
  53. 53.
    Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006) Appl Microbiol Biotechnol 70:358–365Google Scholar
  54. 54.
    Ferreira NL, Malandain C, Fayolle-Guichard F (2006) Appl Microbiol Biotechnol 72:252Google Scholar
  55. 55.
    Hernandez-Perez G, Fayolle F, Vandecasteele JP (2001) Appl Microbiol Biotechnol 55:117Google Scholar
  56. 56.
    Mormile MR, Liu S, Suflita JM (1994) Environ Sci Technol 28:1727Google Scholar
  57. 57.
    Somsamak P, Cowan RM, Häggblom MM (2001) FEMS Microbiol Ecol 37:259Google Scholar
  58. 58.
    Suflita JM, Mormille MR (1993) Environ Sci Technol 27:976Google Scholar
  59. 59.
    Wilson JT, Soo Cho J, Wilson BH, Vardy JA (2000) EPA report EPA/600/R-00/006. Office of Research and Development, US Environmental Protection Agency, Washington, DC, p 49Google Scholar
  60. 60.
    Bradley PM, Chapelle FH, Landmeyer JE (2001) Appl Environ Microbiol 67:1975Google Scholar
  61. 61.
    Bradley PM, Chapelle FH, Landmeyer JE (2001) Environ Sci Technol 35:4643Google Scholar
  62. 62.
    Finneran KT, Lovley DR (2001) Environ Sci Technol 35:1785Google Scholar
  63. 63.
    Galimov EM (2006) Org Geochem 37:1200Google Scholar
  64. 64.
    Elsner M, Zwank L, Hunkeler D, Schwarzenbach RP (2005) Environ Sci Technol 39:6896Google Scholar
  65. 65.
    Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) Environ Sci Technol 39:1018Google Scholar
  66. 66.
    Kuder T, Wilson JT, Kaiser P, Kolhatkar R, Philp P, Allen J (2005) Environ Sci Technol 39:213Google Scholar
  67. 67.
    Nijenhuis I, Andert J, Beck K, Kastner M, Diekert G, Richnow HH (2005) Appl Envi-ron Microbiol 71:3413Google Scholar
  68. 68.
    Somsamak P (2005) Anaerobic biotransformation of methyl tert-butyl ether (MTBE) and related fuel oxygenates under different anoxic conditions. PhD thesis, Rutgers, the State University of New JerseyGoogle Scholar
  69. 69.
    Kopinke FD, Georgi A, Voskamp M, Richnow HH (2005) Environ Sci Technol 39:6052Google Scholar
  70. 70.
    Schuth C, Taubald H, Bolano N, Maciejczyk K (2003) J Contam Hydrol 64:269Google Scholar
  71. 71.
    Fischer A, Bauer J, Meckenstock RU, Stichler W, Griebler C, Maloszewski P, Kastner M, Richnow HH (2006) Environ Sci Technol 40:4245Google Scholar
  72. 72.
    Kuder T, Philp P, Kolhatkar R, Wilson JT, Allen J (2002) Petroleum hydrocarbons and organic chemicals in ground water. National Ground Water Association (NGWA)/American Petroleum Institute (NPI), Atlanta, GA, p 371Google Scholar
  73. 73.
    Kramer WH, Douthit TL (2000) Petroleum hydrocarbons and organic chemicals in groundwater: prevention, detection and restoration. NGWA conference, Anaheim, CA, p 283Google Scholar
  74. 74.
    Clark JJJ (2002) In: Diaz AF, Drogos DL (eds) Oxygenates in gasoline: environmental aspects. American Chemical Society, Washington, DC, p 92Google Scholar
  75. 75.
    Abe Y, Hunkeler D (2006) Environ Sci Technol 40:1588Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mònica Rosell
    • 1
  • Max M. Häggblom
    • 2
  • Hans-Hermann Richnow
    • 1
  1. 1.Department of Isotope BiogeochemistryHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Department of Biochemistry and Microbiology, and Biotechnology Center for Agriculture and the Environment RutgersThe State University of New JerseyNew JerseyUSA

Personalised recommendations