Advertisement

Microbial Degradation of MTBE in Reactors

  • Christopher Kevin Waul
  • Erik Arvin
  • Jens Ejbye Schmidt
Part of the The Handbook of Environmental Chemistry book series (HEC)

Abstract

The use of methyl tert-butyl ether (MTBE) has resulted in serious contamination of many groundwater supplies worldwide. Literature investigations were performed with the aim of improving knowledge on the use of bioreactors for removal of MTBE from contaminated groundwater. Among the important findings were: membrane bioreactors and fluidized bed reactors had the highest volumetric removal rates of all reactors studied, in the order of 1000 mg/(l d); competition for oxygen, nutrients and occupancy between MTBE degraders and oxidisers of co-contaminants such as, ammonium and the group of benzene, toluene, ethylbenzene and xylenes, may reduce the removal rates of MTBE, or prevent its removal in reactors. With mathematical modelling, the long startup time required for some MTBE degrading reactors could be predicted. Long startup times of up to 200 days were due to the low maximum growth rate of the MTBE degraders, in the order of 0.1 d–1 or less, at 25 ◦C. However, despite this, high volumetric MTBE removal rates were found to be possible after the startup period when the biomass concentration reached a steady state.

Keywords

Biodegradation Co-contaminants Modelling MTBE Reactors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deeb RA, Scow KM, Alvarez-Cohen L (2000) Biodegradation 11:171Google Scholar
  2. 2.
    EFOA (2005) MTBE resource guide. The European Fuel Oxygenate Association, Brussels, BelgiumGoogle Scholar
  3. 3.
    Mays MA (1989) Pure Appl Chem 61:1373Google Scholar
  4. 4.
    Morgenroth E, Arvin E (2003) The European perspective to MTBE as an oxygenate in fuels. In: Rapport D, Lasley W, Rolston D, Nielsen O, Qualset C, Damania A (eds) Managing for Ecosystem Health. Lewis Publisher, Boca Raton, Florida, p 1447Google Scholar
  5. 5.
    Johnson R, Pankow J, Bender D, Price C, Zororski J (2000) Environ Sci Technol 34:210AGoogle Scholar
  6. 6.
    White J (2001) Environ Foren 2:185Google Scholar
  7. 7.
    Davis LC, Erickson LE (2004) Environ Prog 23:243Google Scholar
  8. 8.
    Du JT, Abernathy CO, Donohue J, Mahfouz A, Khanna K (1998) Toxicologist 42(1-S):A 1123Google Scholar
  9. 9.
    Fiorenza S, Rifai H (2003) Bioremed J 7:1Google Scholar
  10. 10.
    Deeb RA, Chu K-H, Shih T, Linder S, Suffet I, Kavanaugh MC, Alvarez-Cohen L (2003) Environ Eng Sci 20:433Google Scholar
  11. 11.
    Keller A, Froines J, Koshland C, Reuter J, Suffet I, Last J (1998) Health & environmental assessment of MTBE, summary and recommendations. UC TSR&TP report to the governor of California, CaliforniaGoogle Scholar
  12. 12.
    Juhler R, Felding G (2003) Biodegradation Wat Air Soil Poll 149:145Google Scholar
  13. 13.
    White GF, Russell NJ, Tidswell EC (1996) Microbiol Rev 60:747Google Scholar
  14. 14.
    Fayolle F, Vandecasteele J-P, Monot F (2001) Appl Microbiol Biotechnol 56:339Google Scholar
  15. 15.
    Hanson JR, Ackerman CE, Scow KM (1999) Appl Environ Microbiol 65:4788Google Scholar
  16. 16.
    Salanitro JP, Diaz LA, Williams MP, Wisniewski HL (1994) Appl Environ Microbiol 60:2593Google Scholar
  17. 17.
    Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) Handbook of environmental degradation rates. Lewis Publishers Inc., Chelsea, MichiganGoogle Scholar
  18. 18.
    Japar SM, Wallington TJ, Rudy SJ, Chong TY (1991) Environ Sci Technol 25:415Google Scholar
  19. 19.
    Prince R (2000) Crit Rev Microbiol 26:163Google Scholar
  20. 20.
    Li T, Patel RU, Ramsden DK, Greene J (2003) Ground water recovery and treatment. In: Moyer E, Kostecki PT (eds) MTBE Remediation Handbook. Amherst Scientific Publishers, Massachusetts, p 289CrossRefGoogle Scholar
  21. 21.
    Ferreira NL, Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer C (2006) Appl Microbiol Biotechnol 70:358Google Scholar
  22. 22.
    François A, Mathis H, Godefroy D, Piveteau P, François F, Monot F (2002) Appl Environ Microbiol 68:2754Google Scholar
  23. 23.
    Hatzinger PB, McClay K, Vainberg S, Tugusheva M, Condee CW, Steffan RJ (2001) Appl Environ Microbiol 67:5601Google Scholar
  24. 24.
    Mo K, Lora CO, Wanken AE, Javanmardian M, Yang X, Kulpa CF (1997) Appl Microbiol Biotechnol 47:69Google Scholar
  25. 25.
    Hristova K, Gebreyesus B, Mackay D, Scow KM (2003) Appl Environ Microbiol 69:2616Google Scholar
  26. 26.
    Garnier PM, Auria R, Augur C, Revah S (1999) Appl Microbiol Biotechnol 51:498Google Scholar
  27. 27.
    Hyman MR, Kwon P, O’Reilly KT (1998) Cometabolism of MTBE by alkane-utilizing microorganisms. In: Wickramanayake GB, Hinchee RE (eds) The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 18-21, p 321Google Scholar
  28. 28.
    Johnson E, Smith CA, O’Reilly KT, Hyman MR (2004) Appl Environ Microbiol 70:1023Google Scholar
  29. 29.
    Liu CY, Speitel Jr GE, Georgiou G (2001) Appl Environ Microbiol 67:2197Google Scholar
  30. 30.
    Steffan RJ, McClay K, Vainberg S, Condee CW, Zhang D (1997) Appl Environ Microbiol 63:4216Google Scholar
  31. 31.
    Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New YorkGoogle Scholar
  32. 32.
    Hyman MR, Taylor C, O’Reilly KT (2000) Cometabolic degradation of MTBE by zso-alkane-utilizing bacteria from gasoline-impacted soils. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 149Google Scholar
  33. 33.
    Bradley PM, Chapelle FH, Landmeyer JE (2001) Appl Environ Microbiol 67:1975Google Scholar
  34. 34.
    Finneran KT, Lovley DR (2001) Environ Sci Technol 35:1785Google Scholar
  35. 35.
    Pruden A, Sedran MA, Suidan MT, Venosa AD (2005) Water Environ Res 77:297Google Scholar
  36. 36.
    Somsamak P, Cowan RM, Häggblom MM (2001) FEMS Microbiol Ecol 37:259Google Scholar
  37. 37.
    Suflita JM, Mormile M (1993) Environ Sci Technol 27:976Google Scholar
  38. 38.
    Yeh CK, Novak JT (1994) Water Environ Res 66:744Google Scholar
  39. 39.
    Bryers JD, Characklis WG (1989) Biofilms in water and wastewater treatment. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., p 671Google Scholar
  40. 40.
    Morrison JR, Suidan MT, Venosa AD (2002) J Environ Eng 128:836Google Scholar
  41. 41.
    Vainberg S, Togna AP, Sutton PM, Steffan RJ (2002) J Environ Eng 128:842Google Scholar
  42. 42.
    Wilson GJ, Pruden A, Suidan MT, Venosa AD (2002) J Environ Eng 128:824Google Scholar
  43. 43.
    Arvin E, Nielsen LK, Tully AG, Albrechtsen H-J, Mosbæk H (2004) IWA Leading Edge Conference. Prague, Czech RepublicGoogle Scholar
  44. 44.
    Characklis WG, Marshall KC (1989) Biofilms: a basis for an interdisciplinary approach. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 3Google Scholar
  45. 45.
    Characklis WG (1989) Biofilm processes. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 195Google Scholar
  46. 46.
    Trulear MG, Characklis WG (1982) Wat Pollut Control 54:1288Google Scholar
  47. 47.
    Fortin NY, Morales M, Nakagawa Y, Focht DD, Deshusses MA (2001) Environ Microbiol 3:407Google Scholar
  48. 48.
    Waul C (2007) PhD Thesis, Technical University of DenmarkGoogle Scholar
  49. 49.
    Henze M, Harremoes P, Jes la Cour J, Arvin E (1997) Wastewater treatment: biological and chemical processes, 2nd edn. Springer, HeidelbergGoogle Scholar
  50. 50.
    Christensen BE, Characklis WG (1989) Physical and chemical properties of biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 93Google Scholar
  51. 51.
    Stocking AJ, Deeb RA, Flores AE, Stringfellow WT, Talley J, Brownell R, Kavanaugh MC (2000) Biodegradation 11:187Google Scholar
  52. 52.
    Zein MM, Pinto PX, Garcia-Blanco S, Suidan MT (2006) Biodegradation 17:57Google Scholar
  53. 53.
    Characklis WG, Turakhia MH, Zelver N (1989) Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley Inc., New York, p 265Google Scholar
  54. 54.
    Tchobanoglous G, Burton F, Stensel H (2003) Wastewater engineering: treatment and reuse/Metcaff and Eddy, Inc, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  55. 55.
    Speece RE (1996) Anaerobic biotechnology for industrial wastewaters, 1st edn. Archae Press, Nashville, TXGoogle Scholar
  56. 56.
    Van Loosdrecht MCM, de Kreuk MK, Heijnen JJ (2002) Papers of the Farewell Seminar of Dr.ir. Look Hulshoff Pol. Wageningen, The NetherlandsGoogle Scholar
  57. 57.
    Schmidt JE, Ahring BK (1996) Biotechnol Bioeng 49:229Google Scholar
  58. 58.
    Versprille Ir AI (2002) Papers of the Farewell Seminar of Dr.ir. Look Hulshoff Pol. Wageningen, The NetherlandsGoogle Scholar
  59. 59.
    Jördening H-J, Buchholz K (2005) High rate anaerobic wastewater treatment. In: Jördening H-J, Winter J (eds) Environmental biotechnology: concepts and applications. Wiley-VCH, Weinheim, p 135CrossRefGoogle Scholar
  60. 60.
    Pruden A, Sedran MA, Suidan MT, Venosa AD (2003) J Environ Eng 47:123Google Scholar
  61. 61.
    Stringfellow WT, Oh K-C (2002) J Environ Eng 128:852Google Scholar
  62. 62.
    Steffan RJ, Vainberg S, Condee CW, McClay K (2000) Biotreatment of MTBE with a new bacterial isolate. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 165Google Scholar
  63. 63.
    Zein MM, Suidan MT, Venosa AD (2004) Environ Sci Technol 38:3449Google Scholar
  64. 64.
    Zein MM, Suidan MT, Venosa AD (2006) Environ Sci Technol 40:1997Google Scholar
  65. 65.
    Kharoune M, Pauss A, Lebeault JM (2001) Wat Res 35:1665Google Scholar
  66. 66.
    Arvin E, Krag R, Karlson U (2003) First European Conference on MTBE. Dresden, GermanyGoogle Scholar
  67. 67.
    Acuna-Askar K, Englande Jr AJ, Hu C, Jin G (2000) Water Sci Tech 42:153Google Scholar
  68. 68.
    Jin G, Englande Jr AJ (1998) Water Sci Tech 38:155Google Scholar
  69. 69.
    Liu S-J, Jiang B, Huang G-Q, Li X-G (2006) Wat Res 40:3401Google Scholar
  70. 70.
    Nielsen LK, Tully AG, Albrechtsen H-J, Mosbæk H, Arvin E (2002) Fjernelse af MTBE i danske vandværker. Miløstyrelsen (In Danish), CopenhagenGoogle Scholar
  71. 71.
    Morales M, Deshusses MA, Revah S (2000) Paper 795. Proc. Annual Meeting and Exibition of the Air and Waste Management Association (AWMA). PittsburghGoogle Scholar
  72. 72.
    Prandi A, Romano M, Bottarelli M, Armanini S (2002) Trickling filter decontamination of MTBE from groundwater: 15 field applications. In: Gavaskar AR, Chen ASC (eds) Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterey, CA p2HGoogle Scholar
  73. 73.
    O’Connell JE (2001) Fluidized bed bioreactor for MTBE and TBA in water. In: Magar VS, Gibbs JT, O’Reilly KT, Hyman MR, Leeson A (eds) The Sixth International In Situ and On-Site Bioremediation Symposium. Battelle, San Diego, California, June 4-7, p 91Google Scholar
  74. 74.
    Pruden A, Suidan MT, Venosa AD, Wilson GJ (2001) Environ Sci Technol 35:4235Google Scholar
  75. 75.
    McCarty PL (1972) Energetics of organic matter degradation. In: Mitchell R (ed) Water Pollution Microbiol. Wiley, New York, p 91Google Scholar
  76. 76.
    Longmuir IS (1954) Biochemistry 57:81Google Scholar
  77. 77.
    Park K, Cowan RM (1997) Effects of oxygen and temperature on the biodegradation of MTBE Proceedings of the 213th ACS National Meeting, Division of Environmental Chemistry. San Francisco, California, p 421Google Scholar
  78. 78.
    Koenigsberg S, Sandefur C, Mahaffey W, Deshusses MA, Fortin NY (1999) Peroxygen mediated bioremediation of MTBE. In: Leeson A, Alleman BC (eds) The Fifth International In Situ and On-site Bioremediation Symposium. Battelle, p 13Google Scholar
  79. 79.
    Wang X (2003) PhD Thesis, University of California, RiversideGoogle Scholar
  80. 80.
    Salanitro JP, Chou CS, Wisniewski HL, Vipond TE (1998) Southwestern Regional Conference of the National Ground Water AssociationGoogle Scholar
  81. 81.
    Eweis JB, Chang DPY, Schroeder ED, Scow KM, Morton RL, Caballero RC (1997) Proceedings of the 90th Annual Meeting and Exhibition of the Air & Waste Management Association. Toronto, CanadaGoogle Scholar
  82. 82.
    Piveteau P, Fayolle F, Vandecasteele J-P, Monot F (2001) Appl Microbiol Biotechnol 55:369Google Scholar
  83. 83.
    Deeb RA, Hu H-Y, Hanson JR, Scow KM, Alvarez-Cohen L (2001) Environ Sci Technol 35:312Google Scholar
  84. 84.
    Church CD, Tratnyek PJ, Pankow JF, Landmeyer JE, Baehr AL, Thomas MA, Schirmer M (1999) Proceedings of the Technical Meeting of USGS Toxic Substances Hydrology Program. Charleston, SCGoogle Scholar
  85. 85.
    Stringfellow WT, Hines RD, Cockrum DK, Kilkenny ST (2000) Factors influenc-ing biological treatment of MTBE in fixed film reactors. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 175Google Scholar
  86. 86.
    Goudar CT, Strevett KA (1998) J Indus Microbiol Biotech 21:11Google Scholar
  87. 87.
    Krag R, Arvin E (2004) Second European Conference on MTBE. Barcelona, SpainGoogle Scholar
  88. 88.
    Pruden A (2002) PhD Thesis, University of CincinnatiGoogle Scholar
  89. 89.
    Sedran MA, Pruden A, Wilson GJ, Suidan MT, Venosa AD (2002) J Environ Eng 128:830Google Scholar
  90. 90.
    Eweis JB, Watanabe N, Schroeder ED, Chang DPY, Scow KM (1998) National Groundwater Association Conference. Anaheim, CaliforniaGoogle Scholar
  91. 91.
    Eweis JB, Schroeder ED, Chang DPY, Scow KM (1998) Biodegradation of MTBE in a pilot-scale biofilter. In: Wickramanayake GB, Hinchee RE (eds) The First International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Montery, California, May 18-21, p 341Google Scholar
  92. 92.
    Shim H, Yang S-T (1999) J Biotech 67:99Google Scholar
  93. 93.
    Arcangeli J-P, Arvin E (1994) Wat Sci Tech 29:393Google Scholar
  94. 94.
    Arcangeli J-P, Arvin E (1992) Appl Microbiol Biotechnol 37:510Google Scholar
  95. 95.
    Waul C, Christensen N, Mosbæk H, Arvin E, Schmidt JE (2004) Second European Conference on MTBE. Barcelona, SpainGoogle Scholar
  96. 96.
    Schroeder ED, Scow KM, Converse BM, Scarano J, Watanabe N, Romstad K (2000) Extended abstract prepared for the USEPA/API Workshop on the Biodegradation of MTBE. Cincinati, OHGoogle Scholar
  97. 97.
    Zaitsev GM, Uotila JS, Häggblom MM (2007) Appl Microbiol Biotechnol 74:1092Google Scholar
  98. 98.
    Nielsen LK, Petersen AG (2001) MSc Thesis, Technical University of DenmarkGoogle Scholar
  99. 99.
    Sedran MA (2004) PhD Thesis, University of CincinnatiGoogle Scholar
  100. 100.
    Hyman MR, O’Reilly KT (1999) Physiological and enzymatic features of MTBE-degrading bacteria. In: Alleman BC, Leeson A (eds) Proceedings of the Fifth International In Situ and On-site Bioremediation Symposium. Battelle, Monterey, California, May 18-21, p 7Google Scholar
  101. 101.
    Steffan RJ, Farhan YH, Condee CW, Drew S (2003) Bioremediation at a New Jer-sey site using propane-oxidising bacteria. In: Moyer E, Kostecki PT (eds) MTBE Remediation Handbook. Amherst Scientific Publishers, Amherst, Massachusetts, p 503CrossRefGoogle Scholar
  102. 102.
    Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Appl Microbiol Biotechnol 55:17Google Scholar
  103. 103.
    Corcho D, Watkinson RJ, Lerner DN (2000) Cometabolic degradation of MTBE by a cyclohexane-oxidising bacteria. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) The Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle, Monterey, California, May 22-25, p 183Google Scholar
  104. 104.
    Smith CA, O’Reilly KT, Hyman MR (2003) Appl Environ Microbiol 69:7385Google Scholar
  105. 105.
    Smith CA, O’Reilly KT, Hyman MR (2003) Appl Environ Microbiol 69:796Google Scholar
  106. 106.
    Cowan RM, Park K (1996) Proceedings of the 28th Mid-Atlantic Industrial and Hazardous Waste Conference. Buffalo, New YorkGoogle Scholar
  107. 107.
    Henze M, Grady Jr CPL, Gujer W, Marais GvR, Matsuo T (1987) Activated sludge model no. 1 (IAWPRC Scientific and Technical Report No. 1). IAWPRC, LondonGoogle Scholar
  108. 108.
    Wilson JT (2003) Aerobic in situ bioremediation. In: Moyer E, Kostecki PT (eds) MTBE Remediation Handbook. Amherst Scientific Publishers, Amherst, Mas-sachusetts, p 243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christopher Kevin Waul
  • Erik Arvin
    • 1
  • Jens Ejbye Schmidt
  1. 1.Institute of Environment & ResourcesTechnical University of DenmarkLyngbyDenmark

Personalised recommendations