Skip to main content

Multimodal Image Registration for Efficient Multi-resolution Visualization

  • Conference paper
Visualization in Medicine and Life Sciences

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 1264 Accesses

Summary

Arising from the clinical need for multimodal imaging, an integrated system for automated multimodal image registration and multi-source volume rendering has been developed, enabling simultaneous processing and rendering of image data from structural and functional medical imaging sources. The algorithms satisfy real-time data processing constraints, as required for clinal deployment.

The system represents an integrated pipeline for multimodal diagnostics comprising of multiple-source image acquisition; efficient, wavelet-based data storage; automated image registration based on mutual information and histogram transformations; and texture-based volume rendering for interactive rendering on multiple scales.

Efficient storage and processing of multimodal images as well as histogram transformation and registration will be discussed. It will be shown how the conflict of variable resolutions that occurs when using different modalities can be resolved efficiently by using a wavelet-based storage pattern, which also offers advantages for multi-resolution rendering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ashley J., Barber R., Flickner M., Lee D., Niblack W., and Petkovic D.: Automatic and semiautomatic methods for image annotation and retrieval in qbic. In: Proc. SPIE Storage and Retrieval for Image and Video Databases III, 24-35 (1995)

    Google Scholar 

  2. Brown L. G.: A survey of image registration techniques. ACM Computing Surveys 24, 4, 325–376 (1992)

    Article  Google Scholar 

  3. Butz T. and Thiran J.: Affine registration with feature space mututal information. In: Lecture Notes in Computer Science 2208: MICCAI 2001, Springer-Verlag Berlin Heidelberg, 549–556 (2001)

    Google Scholar 

  4. Cristiani N. and Shaw-Taylor J.: Suport Vector Machines and other kernel-based learning methods. Cambridge U. Press (2000)

    Google Scholar 

  5. Van den Elsen P.A., Pol D. E., Sumanaweera S.T., Hemler P. F., Napel S., Adler J. R.: Grey value correlation techniques used for automatic matching of CT and MR brain and spine images. Proc. Visualization in Biomedical Computing, SPIE 2359, 227-237 (1994)

    Google Scholar 

  6. Van den Elsen P. A., Maintz J. B. A., Pol D. E., Viergever M. A.: Automatic registration of CT and MR brain images using correlation of geo-metrical features. IEEE Transactions on Medical Imaging 14, 2, 384–396 (1995)

    Article  Google Scholar 

  7. Gonzalez R. C., Woods R. E.: Digital Image Processing. Prentice Hall (2002)

    Google Scholar 

  8. Hill D., Batchelor P., Holden M., and Hawkes D.: Medical image registration. Phys. Med. Biol., 26, R1–R45 (2001)

    Article  Google Scholar 

  9. Huang J., Kumar S., Mitra M., and Zhu W.: Spatial color indexing and applications. In: Proc. of IEEE International Conf. Computer Vision ICCV ’98, Bombay, India, 602-608 (1998)

    Google Scholar 

  10. Jacobs D. A. H.: The state of the art in numerical analysis. Academic Press, London (1977)

    Google Scholar 

  11. Jenkinson M., Bannister P., Brady M., and Smith S.: Improved methods for the registration and motion correction of brain images. Technical report, Oxford University (2002)

    Google Scholar 

  12. Lefébure M. and Cohen L.: Image registration, optical flow and local rigidity. J. Mathematical Imaging and Vision, 2(14), 131–147 (2001)

    Article  Google Scholar 

  13. Lo C. H., Guo Y., Lu C. C.: A binarization approach to CT-MR registration using Normalized Mutual Information. Proc. IASTED Signal and Image Processing, 399 (2003)

    Google Scholar 

  14. Maes F., Collignon A., Vandermeulen D., Marchal G., Suetens P.: Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16, 2, 187–198 (1997)

    Article  Google Scholar 

  15. Maintz J. B. and Viergever M.: A survey of medical image registration. Medical Image Analysis, 1(2), 1–36 (1998)

    Article  Google Scholar 

  16. Meyer C. R., Boes J. L., Kim B., Bland P. H., Zasadny K. R., Kison P. V., Koral K. F., Frey K. A., and Wahl R. L.: Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Medical Image Analysis, 2(1), 195–206 (1997)

    Article  Google Scholar 

  17. Meyer J., Borg R., Takanashi I., Lum E. B., and Hamann B.:Segmentation and Texture-based Hierarchical Rendering Techniques for Large-scale Real-color Biomedical Image Data. In: Post F. H., Nielson G. H., Bonneau G.-P., eds., Data Visualization - The State of the Art, Kluwer Academic Publishers, Boston, 169–182 (2003)

    Google Scholar 

  18. Penney C., Weese J., Little J., Hill, D., and Hawkes, D.: A comparison of similarity measures for used in 2-D-3-D medical image registration. IEEE Trans. on Medical Imaging, 4(17), 586–595 (1998)

    Article  Google Scholar 

  19. Pluim J. P. W., Maintz J. B. A., Viergever M. A.: Mutual Information based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22, 8, 896–1004 (2003)

    Article  Google Scholar 

  20. Stoica R., Zerubia J., and Francos J. M.: The two-dimensional wold decomposition for segmentation and indexing in image libraries. In: Proc. IEEE Int. Conf. Acoust., Speech, and Sig. Proc., Seattle (1998)

    Google Scholar 

  21. Studholme C., Hill D. L. G., Hawkes D. J.: Automated 3-D registration of MR and CT images of the head. Medical Image Analysis 1, 2, 163–175 (1996)

    Article  Google Scholar 

  22. Viola P. and Wells III W. M.: Alignment by maximization of mutual information. In: Proceedings of IEEE International Conference on Computer Vision, Los Alamitos, CA, 16-23 (1995)

    Google Scholar 

  23. Wells W. M., Viola P., Atsumi H., Nakajima S., Kikinis R.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1, 1, 35–51 (1996)

    Article  Google Scholar 

  24. Zhu Y. M.: Volume image registration by cross-entropy optimization. IEEE Transactions on Medical Imaging 21, 174–180 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Meyer, J. (2008). Multimodal Image Registration for Efficient Multi-resolution Visualization. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_8

Download citation

Publish with us

Policies and ethics