Skip to main content

Supporting Depth and Motion Perception in Medical Volume Data

  • Conference paper
Visualization in Medicine and Life Sciences

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

There are many application areas where dynamic visualization techniques cannot be used and the user can only view a still image. Perceiving depth and understanding spatio-temporal relations from a single still image are challenging tasks. We present visualization techniques which support the user in perceiving depth information from 3D angiography images, and techniques which depict motion inherent in time-varying medical volume datasets. In both cases no dynamic visualization is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boring, E., Pang, A.: Directional Flow Visualization of Vector Fields. In: VIS ’96: Proceedings of the conference on Visualization, 389-392, IEEE Computer Society (1996)

    Google Scholar 

  2. Bruno, N., Cutting, J.: Minimodality and the perception of layout. In: Journal of Experimental Psychology, 117, 161–170 (1988)

    Google Scholar 

  3. Dosher, B.A., Sperling, G., Wurst, S.A.: Tradeoffs between stereopsis and proximity luminance covariance as determinants of perceived 3d structure. In: Journal of Vision Research, 26(6), 973–990 (1986)

    Article  Google Scholar 

  4. Gerig, G., Koller, T., Szekely, G., Brechbühler, C., Kübler, O.: Symbolic description of 3-d structures applied to cerebral vessel tree obtained from mr angiography volume data. In: IPMI ’93: Proceedings of the 13th International Conference on Information Processing in Medical Imaging, 94-111, Springer-Verlag (1993)

    Google Scholar 

  5. Hahn, H.K., Preim, B., Selle, D., Peitgen, H.O.: Visualization and inter-action techniques for the exploration of vascular structures. In: VIS ’01: Proceedings of the conference on Visualization, 395-402, IEEE Computer Society (2001)

    Google Scholar 

  6. Hanson, A.J., Cross, R.A.: Interactive visualization methods for four dimensions. In: VIS ’93: Proceedings of the conference on Visualization, 196-203, IEEE Computer Society (1993)

    Google Scholar 

  7. Interrante, V., Grosch, C.: Strategies for Effectively Visualizing 3D Flow with Volume LIC. In: VIS ’97: Proceedings of the conference on Visualization, 421-424, IEEE Computer Society (1997)

    Google Scholar 

  8. Ji, G., Shen, H.-W., Wenger, R.: Volume Tracking using Higher Dimensional Isocontouring. In: VIS ’03: Proceedings of the conference on Visualization, 201-208, IEEE Computer Society (2003)

    Google Scholar 

  9. Joshi, A., Rheingans, P.: Illustration-inspired techniques for visualizing time-varying data. In: VIS ’05: Proceedings of the conference on Visualization, 679-686, IEEE Computer Society (2005)

    Google Scholar 

  10. Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., Gröller, E.: Cpr: Curved planar reformation. In: VIS ’02: Proceedings of the con-ference on Visualization, 37-44, IEEE Computer Society (2002)

    Google Scholar 

  11. Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The State of the Art in Flow Visualization: Dense and Texture-Based Techniques. Computer Graphics Forum, 23(2), 203–221 (2004)

    Article  Google Scholar 

  12. Lipton, L.: Stereographics developers handbook. StereoGraphics Corporation (1997)

    Google Scholar 

  13. Masuch, M., Schlechtweg, S., Schulz, R.: Speedlines - Depicting Motion in Motionless Pictures. In: SIGGRAPH ’99 Conference Abstracts and Applications, 277 (1999)

    Google Scholar 

  14. Max, N., Crawfis, R., Williams, D.: Visualizing Wind Velocities by Advecting Cloud Textures. In: VIS ’92: Proceedings of the conference on Visualization, 179-184, IEEE Computer Society (1992)

    Google Scholar 

  15. Meyer-Spradow, J., Ropinski, T., Vahrenhold, J., Hinrichs, K.H.: Illustrating Dynamics of Time-Varying Volume Datasets in Static Images. In: Proceedings of Vision, Modeling and Visualization 2006, 333–340 (2006)

    Google Scholar 

  16. Nienhaus, M., Döllner, J.: Depicting Dynamics Using Principles of Visual Art and Narrations. In: IEEE Computer Graphics & Applications, 25(3), 40–51 (2005)

    Article  Google Scholar 

  17. Oeltze, S., Preim, B.: Visualization of vascular structures: method, validation and evaluation. In: IEEE Transactions on Medical Imaging, 24(4), 540–548 (2005)

    Article  Google Scholar 

  18. Pfautz, J: Depth perception in computer graphics. Doctoral dissertation, University of Cambridge, UK (2000)

    Google Scholar 

  19. Ropinski, T., Steinicke, F., Hinrichs, K.H.: Visually Supporting Depth Perception in Angiography Imaging. In: Proceedings of the 6th Inter-national Symposium on Smart Graphics (SG06), 93-104 (2006)

    Google Scholar 

  20. Straka, M., Cervenansky, M., Cruz, A.L., Kochl, A., Sramek, M., Gröller, E., Fleischmann, D.: (2004). The vesselglyph: focus & context visualization in ct-angiography. In: VIS ’04: Proceedings of the conference on Visualization, 385-392, IEEE Computer Society (2004)

    Google Scholar 

  21. Svakhine, N., Jang, Y., Ebert, D., Gaither, K.: Illustration and Photography Inspired Visualization of Flows and Volumes. In: VIS ’05: Proceedings of the conference on Visualization, 687-694, IEEE Computer Society (2005)

    Google Scholar 

  22. Wanger, L.C., Ferwerda, J.A., Greenberg, D.P.: Perceiving spatial relationships in computer-generated images. In: IEEE Computer Graphics and Applications, 12(3), 44–51, 54-58 (1992)

    Article  Google Scholar 

  23. Woodring, J., Wang, C., Shen, H.-W.: High Dimensional Direct Render-ing of Time-Varying Volumetric Data. In: VIS 03’: Proceedings of the conference on Visualization, 417-424, IEEE Computer Society (2003)

    Google Scholar 

  24. Young, M.J., Landy, M.S., Maloney, L.T.: A perturbation analysis of depth perception from combinations of texture and motion cues. In: Journal of Vision Research, 33(18), 2685–2696 (1993)

    Article  Google Scholar 

  25. http://voreen.uni-muenster.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Meyer-Spradow, J., Ropinski, T., Hinrichs, K. (2008). Supporting Depth and Motion Perception in Medical Volume Data. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_7

Download citation

Publish with us

Policies and ethics