Advertisement

3D Visualization of Vasculature: An Overview

  • Bernhard Preim
  • Steffen Oeltze
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

A large variety of techniques has been developed to visualize vascular structures. These techniques differ in the necessary preprocessing effort, in the computational effort to create the visualizations, in the accuracy with respect to the underlying image data and in the visual quality of the result. In this overview, we compare 3D visualization methods and discuss their applicability for diagnosis, therapy planning and educational purposes. We consider direct volume rendering as well as surface rendering.

In particular, we distinguish model-based approaches, which rely on model assumptions to create “idealized” easy-to-interpret visualizations and model-free approaches, which represent the data more faithfully. Furthermore, we discuss interaction techniques to explore vascular structures and illustrative techniques which map additional information on a vascular tree, such as the distance to a tumor. Finally, navigation within vascular trees (virtual angioscopy) is discussed. Despite the diversity and number of existing methods, there is still a demand for future research which is also discussed.

Keywords

Vascular Structure Segmentation Result Vascular Tree Implicit Surface Marching Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACea98]
    Gassan Abdoulaev, Sandro Cadeddu, and Giovanni Delussu et al. ViVa: The virtual vascular project. IEEE Transactions on Information Technology in Biomedicine, 22(4):268–274, December 1998.CrossRefGoogle Scholar
  2. [Blo94]
    Jules Bloomenthal. An Implicit Surface Polygonizer. In Graphics Gems IV, pages 324–349. Academic Press, Boston, 1994.Google Scholar
  3. [BRB05]
    Alexander Bornik, Bernhard Reitinger, and Reinhard Beichel. Re-construction and Representation of Tubular Structures using Simplex Meshes. In Proc. of Winter School of Computer Graphics (WSCG), pages 61-65, 2005.Google Scholar
  4. [BS91]
    Jules Bloomenthal and K Shoemake. Convolution Surfaces. Computer Graphics (Proc. of ACM SIGGRAPH), 25:251–256, 1991.CrossRefGoogle Scholar
  5. [BSSW99]
    Dirk Bartz, Wolfgang Straßer, Martin Skalej, and Dorothea Welte. Interactive Exploration of Extra- and Intracranial Blood Vessels. In Proc. of IEEE Visualization, pages 389-392, 1999.Google Scholar
  6. [BSWS99]
    Dirk Bartz, Martin Skalej, Dorothea Welte, and Wolfgang Straßer. 3D Interactive Virtual Angiography. In Proc. of Computer-Assisted Radiology and Surgery, pages 389-392, 1999.Google Scholar
  7. [BTBP07]
    Alexandra Baer, Christian Tietjen, Ragnar Bade, and Bernhard Preim. Hardware-Accelerated Stippling of Surfaces Derived from Medical Volume Data. In IEEE/Eurographics Symposium on Visualization, Eurographics, 2007.Google Scholar
  8. [CCA+ 05]
    Juan R. Cebral Marcelo Adrián Castro, Sunil Appanaboyina Christopher M. Putman, Daniel Millan, and Alejandro F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Transactions on Medical Imaging, 24(4):457–467, 2005.CrossRefGoogle Scholar
  9. [CL01]
    Juan R. Cebral and Rainald Lohner. From Medical Images to Anatomically Accurate Finite Element Grids. International Journal of Numerical Methdos in Engineering, 51:985–1008, 2001.zbMATHCrossRefGoogle Scholar
  10. [EDKS94]
    D Hans-Heino Ehricke, D Klaus Donner, D Walter Killer, and D Wolfgang Straßer. Visualization of vasculature from volume data. Computers and Graphics, 18(3):395–406, 1994.CrossRefGoogle Scholar
  11. [BTBP07]
    Alejandro F. Frangi, Wiro J. Niessen, Koen L. Vincken, and Max A. Viergever. Multiscale vessel enhancement filtering. In Proc. of Medical Image Computing and Computer-Assisted Intervention, volume 1496 of Lecture Notes in Computer Science, pages 130-137. Springer, 1998.Google Scholar
  12. [FSS+ 99]
    Martin Fiebich Christopher M. Straus, Vivek Sehgal Bernhard C. Renger, Kunio Doi, and Kenneth R. Hoffmann. Automatic bone seg-mentation technique for CT angiographic studies. Journal of Computer Assisted Tomography, 23(1):155–161, 1999.CrossRefGoogle Scholar
  13. [FWB04]
    Petr Felkl, Rainer Wegenkittl, and Katja Bühler. Surface Models of Tube Trees. In Proc. of Computer Graphics International, pages 70-77, 2004.Google Scholar
  14. [FWB04]
    Sarah F. Frisken Gibson. Constrained elastic surface nets: Generating smooth surfaces from binary segmented data. In Proc. of MICCAI, volume 1496 of Lecture Notes in Computer Science, pages 888-898. Springer, 1998.Google Scholar
  15. [GKS+ 93]
    Guido Gerig, Thomas Koller, Gábor Székely, Christian Brechbühler, and Olaf Kübler. Symbolic description of 3-d structures applied to cerebral vessel tree obtained from mr angiography volume data. In Proc. of Information Processing in Medical Imaging, volume 687 of Lecture Notes in Computer Science, pages 94-111. Springer, 1993.Google Scholar
  16. [Han06]
    Christian Hansen. Verwendung von Textur in der Gefävisualisierung. Master’s thesis, Dept. of Computer Science, Magdeburg, 2006.Google Scholar
  17. [HHFG05]
    Fernando Vega Higuera, Peter Hastreiter, Rudolf Fahlbusch, and Gunter Greiner. High performance volume splatting for visualization of neurovascular data. In Proc. of IEEE Visualization, 2005.Google Scholar
  18. [HPea00]
    Karl-Heinz Höhne, Bernhard Pflesser, and Andreas Pommert et al. A Realistic Model of the Inner Organs from the Visible Human Data. In Proc. of Medical Image Computing and Computer-Assisted Intervention, volume 1935 of Lecture Notes in Computer Science, pages 776-785. Springer, 2000.Google Scholar
  19. [HPSP01]
    Horst K. Hahn, Bernhard Preim, Dirk Selle, and Heinz-Otto Peitgen. Visualization and Interaction Techniques for the Exploration of Vas-cular Structures. In IEEE Visualization, pages 395-402, 2001.Google Scholar
  20. [KFW+ 02]
    Armin Kanitsar, Dominik Fleischmann, Rainer Wegenkittl, Petr Felkel, and Eduard Gröller. CPR: curved planar reformation. In Proc. of IEEE Visualization, pages 37-44. IEEE Computer Society, 2002.Google Scholar
  21. [KQ04]
    Cemil Kirbas and Francis Quek. A Review of Vessel Extraction Tech-niques and Algorithms. ACM Computing Surveys, 36(2):81–121, June 2004.CrossRefGoogle Scholar
  22. [MMD96]
    Yoshitaka Masutani, Ken Masamune, and Takeyoshi Dohi. Region-Growing-Based Feature Extraction Algorithm for Tree-Like Objects. In Proc. of Visualization in Biomedical Computing, volume 1131 of LNCS, pages 161-171. Springer, 1996.Google Scholar
  23. [OBA+ 03]
    Yutaka Ohtake, A. Belyaev, Marc Alexa, Greg Turk, and Hans-Peter Seidel. Multilevel Partition of Unity Implicits. ACM Transactions on Graphics, (22):463-470, 2003.Google Scholar
  24. [OP04]
    Steffen Oeltze and Bernhard Preim. Visualization of Vascular Structures with Convolution Surfaces. In Proc. of IEEE/Eurographics Symposium on Visualization (VisSym), pages 311-320, 2004.Google Scholar
  25. [OP05]
    Steffen Oeltze and Bernhard Preim. Visualization of Vascular Structures with Convolution Surfaces: Method, Validation and Evaluation. IEEE Transactions on Medical Imaging, 25(4):540–549, 2005.CrossRefGoogle Scholar
  26. [PBH92]
    Andreas Pommert, Michael Bomans, and Karl Heinz Höhne. Volume visualization in magnetic resonance angiography. IEEE Computer Graphics and Application, 12(5):12–13, 1992.Google Scholar
  27. [PHP+ 01]
    Andreas Pommert, Karl Heinz Höhne, Bernhard Pflesser, Ernst Richter, Martin Riemer, Thomas Schiemann, Rainer Schubert, Udo Schumacher, and Ulf Tiede. Creating a high-resolution spatial/ symbolic model of the inner organs based on the visible human. Medical Image Analysis, 5(3):221–228, 2001.CrossRefGoogle Scholar
  28. [PZGT97]
    Piero Pili, Antonio Zorcolo, Enrico Gobbetti, and Massimiliano Tuveri. Interactive 3D visualization of carotid arteries. International Angiology, 16(3):153, September 1997.Google Scholar
  29. [RHP+ 06]
    Felix Ritter, Christian Hansen, Bernhard Preim, Volker Dicken, Olaf Konrad-Verse, and Heinz-Otto Peitgen. Real-Time Illustration of Vascular Structures for Surgery. IEEE Transactions on Visualization and Graphics, 12(5):877–884, 2006.CrossRefGoogle Scholar
  30. [RSBB06]
    Bernhard Reitinger, Dieter Schmalstieg, Alexander Bornik, and Reinhard Beichel. Spatial Analysis Tools for Medical Virtual Reality. In Proc. of IEEE Symposium on 3D User Interface 2006 (3DUI 2006), 2006.Google Scholar
  31. [SCC+ 04]
    Mats Straka, Michal Cervenansk, Alexandra La Cruz, Arnold Köchl, Milos Sramek, Eduard Gröller, and Dominik Fleischmann. The VesselGlyph: Focus & Context Visualization in CT-Angiography. In Proc. of IEEE Visualization, pages 385-392, 2004.Google Scholar
  32. [SOB+ 07]
    Christian Schumann, Steffen Oeltze, Ragnar Bade, Bernhard Preim, and Heinz-Otto Peitgen. Model-free Surface Visualization of Vascular Trees. In IEEE/Eurographics Symposium on Visualization, Eurographics, 2007.Google Scholar
  33. [SPSHOP02]
    Dirk Selle, Bernhard Preim, Andrea Schenk, and Heinz-Otto-Peitgen. Analysis of Vasculature for Liver Surgery Planning. IEEE Transactions on Medical Imaging, 21(11):1344–1357, November 2002.CrossRefGoogle Scholar
  34. [SOB+ 07]
    James Siebert, T. Rosenbaum, and Joseph Pernicone. Automated Segmentation and Presentation Algorithms for 3D MR Angiography (Poster Abstract). In Proc. of 10th Annual Meeting of the Society of Magnetic Resonance in Medicine, page Poster 758, 1991.Google Scholar
  35. [Tau95]
    Gabriel Taubin. A signal processing approach to fair surface design. In Proc. of ACM SIGGRAPH, pages 351-358, 1995.Google Scholar
  36. [UGS+ 97]
    Markus Urban, Christoph Groden, Thomas Schiemann, Rainer Schubert, and Karl Heinz Höhne. A 3d model of the cranial vessels for anatomy teaching and rehearsal of interventions. In Proc. of Computer Assisted Radiology and Surgery (CAR ’97), volume 1134 of Excerpta Medica International Congress Series, pages 1014–1015. Elsevier, Amsterdam, 1997.Google Scholar
  37. [vH06]
    Verena von Hintzenstern. Interaktionstechniken zur Exploration von Gefäßbäumen. Master’s thesis, Dept. of Computer Science, Magdeburg, 2006.Google Scholar
  38. [VMM99]
    Jörg Vollmer, Robert Mencel, and Heinrich Mueller. Improved Laplacian smoothing of noisy surface meshes. In Proc. of EuroGraphics, pages 131-138, 1999.Google Scholar
  39. [VST+ 03]
    Fernando Vega, Natascha Sauber, Bernd Tomandl, Christopher Nimsky, Gunter Greiner, and Peter Hastreiter. Enhanced 3D-Visualization of Intracranial Aneurysms Involving the Skull Base. In Proc. of Medical Image Computing and Computer-Assisted Intervention, volume 2879 of LNCS, pages 256-263. Springer, 2003.Google Scholar
  40. [WMM05]
    Thomas Wischgoll, Elke Moritz, and Jörg Meyer. Navigational Aspects of an Interactive 3D Exploration System for Cardiovascular Structures. In Proc. of IASTED Int. Conference on Visualization, Imaging, and Image Processing, pages 721-726, 2005.Google Scholar
  41. [Zui95]
    Karel Zuiderveld. Visualization of Multimodality Medical Volume Data using Object-Oriented Methods. PhD thesis, Universiteit Utrecht, 1995.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Bernhard Preim
    • 1
  • Steffen Oeltze
    • 1
  1. 1.Otto-von-Guericke University MagdeburgGermany

Personalised recommendations