Visual Analysis of Biomolecular Surfaces

  • Vijay Natarajan
  • Patrice Koehl
  • Yusu Wang
  • Bernd Hamann
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

Surface models of biomolecules have become crucially important for the study and understanding of interaction between biomolecules and their environment. We argue for the need for a detailed understanding of biomolecular surfaces by describing several applications in computational and structural biology. We review methods used to model, represent, characterize, and visualize biomolecular surfaces focusing on the role that geometry and topology play in identifying features on the surface. These methods enable the development of efficient computational and visualization tools for studying the function of biomolecules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB99]
    E. Alm and D. Baker. Prediction of protein-folding mechanisms from free energy landscapes derived from native structures. Proc. Natl. Acad. Sci. (USA), 96:11305–11310, 1999.CrossRefGoogle Scholar
  2. [AE96]
    N. Akkiraju and H. Edelsbrunner. Triangulating the surface of a molecule. Discrete Applied Mathematics, 71:5–22, 1996.MATHCrossRefMathSciNetGoogle Scholar
  3. [AEHW04]
    P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme elevation on a 2-manifold. In Proc. 20th Ann. Sympos. Comput. Geom., pages 357-365, 2004.Google Scholar
  4. [AMKB02]
    E. Alm, A. V. Morozov, T. Kortemme, and D. Baker. Simple physical models connect theory and experiments in protein folding kinetics. J. Mol. Biol., 322:463–476, 2002.CrossRefGoogle Scholar
  5. [Anf73]
    C. B. Anfinsen. Principles that govern protein folding. Science, 181:223–230, 1973.CrossRefGoogle Scholar
  6. [Ban70]
    T. F. Banchoff. Critical points and curvature for embedded polyhedral surfaces. American Mathematical Monthly, 77(5):475–485, 1970.MATHCrossRefMathSciNetGoogle Scholar
  7. [BEHP04]
    P. T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385–396, 2004.CrossRefGoogle Scholar
  8. [BEK01]
    A. Bernal, U. Ear, and N. Kyrpides. Genomes online database (GOLD): a monitor of genome projects world-wide. Nucl. Acids. Res., 29:126–127, 2001.CrossRefGoogle Scholar
  9. [BKW+77]
    F. C. Bernstein, T. F. Koetzle, G. William, D. J. Meyer, M. D. Brice, J. R. Rodgers, et al. The protein databank: a computer-based archival file for macromolecular structures. J. Mol. Biol., 112:535–542, 1977.CrossRefGoogle Scholar
  10. [BQO+93]
    M. Billeter, Y.Q. Qian, G. Otting, M. Muller, W. Gehring, and K. Wuthrich. Determination of the nuclear magnetic resonance solution structure of an antennapedia homeodomain-dna complex. J. Mol. Biol., 234:1084–1093, 1993.CrossRefGoogle Scholar
  11. [BS01]
    D. Baker and A. Sali. Protein structure prediction and structural genomics. Science, 294:93–96, 2001.CrossRefGoogle Scholar
  12. [BT91]
    C. Branden and J. Tooze. Introduction to Protein Structure. Garland Publishing, New York, NY, 1991.Google Scholar
  13. [BWF+ 00]
    H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, et al. The Protein Data Bank. Nucl. Acids. Res., 28:235–242, 2000.CrossRefGoogle Scholar
  14. [CBJ00]
    D. A. Cosgrove, D. M. Bayada, and A. J. Johnson. A novel method of aligning molecules by local surface shape similarity. J. Comput-Aided Mol Des, 14:573–591, 2000.CrossRefGoogle Scholar
  15. [CCL03]
    F. Cazals, F. Chazal, and T. Lewiner. Molecular shape analysis based upon the Morse-Smale complex and the Connolly function. In Proc. 19th Annu. ACM Sympos. Comput. Geom., 2003.Google Scholar
  16. [CDES01]
    H.-L Cheng, T. K. Dey, H. Edelsbrunner, and J. Sullivan. Dynamic skin triangulation. Discrete Comput. Geom., 25:525–568, 2001.MATHCrossRefMathSciNetGoogle Scholar
  17. [CK00]
    T. E. Cheatham and P. A. Kollman. Molecular dynamics simulation of nucleic acids. Ann. Rev. Phys. Chem., 51:435–471, 2000.CrossRefGoogle Scholar
  18. [Con83]
    M. L. Connolly. Analytical molecular surface calculation. J. Appl. Cryst., 16:548–558, 1983.CrossRefGoogle Scholar
  19. [Con85]
    M. L. Connolly. Molecular surface triangulation. J. Appl. Cryst., 18:499–505, 1985.CrossRefGoogle Scholar
  20. [Con86a]
    M. L. Connolly. Measurement of protein surface shape by solid angles. J. Mol. Graphics., 4:3–6, 1986.CrossRefGoogle Scholar
  21. [Con86b]
    M. L. Connolly. Shape complementarity at the hemo-globin albl subunit interface. Biopolymers, 25:1229–1247, 1986.CrossRefGoogle Scholar
  22. [Con96]
    M. L. Connolly. Molecular surface: A review. Network Science, 1996.Google Scholar
  23. [CP53]
    R. B. Corey and L. Pauling. Molecular models of amino acids, peptides and proteins. Rev. Sci. Instr., 24:621–627, 1953.CrossRefGoogle Scholar
  24. [Cre84]
    T. E. Creighton. Proteins. Structures and Molecular Principles. Free-man, New York, NY, 1984.Google Scholar
  25. [CS04]
    H. L. Cheng and X. Shi. Guaranteed quality triangulation of molecular skin surfaces. In Proc. IEEE Visualization, pages 481-488, 2004.Google Scholar
  26. [CS05]
    H. L. Cheng and X. Shi. Quality mesh generation for molecular skin surfaces using restricted union of balls. In Proc. IEEE Visualization, pages 399-405, 2005.Google Scholar
  27. [DNW02]
    D. Duhovny, R. Nussinov, and H. J. Wolfson. Efficient unbound docking of rigid molecules. In WABI ’02: Proceedings of the Second International Workshop on Algorithms in Bioinformatics, pages 185-200, 2002.Google Scholar
  28. [DO93a]
    B. S. Duncan and A. J. Olson. Approximation and characterization of molecular surfaces. Biopolymers, 33:219–229, 1993.CrossRefGoogle Scholar
  29. [DO93b]
    B. S. Duncan and A. J. Olson. Shape analysis of molecular surfaces. Biopolymers, 33:231–238, 1993.CrossRefGoogle Scholar
  30. [EFL98]
    H. Edelsbrunner, M. A. Facello, and J. Liang. On the definition and construction of pockets in macromolecules. Discrete Appl. Math., 88:83–102, 1998.MATHCrossRefMathSciNetGoogle Scholar
  31. [EHZ03]
    H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30(1):87–107, 2003.MATHCrossRefMathSciNetGoogle Scholar
  32. [EKB02]
    T. E. Exner, M. Keil, and J. Brickmann. Pattern recognition strategies for molecular surfaces. I. Pattern generation using fuzzy set theory. J. Comput. Chem., 23:1176–1187, 2002.CrossRefGoogle Scholar
  33. [ELZ02]
    H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Discrete and Computational Geometry, 28(4):511–533, 2002.MATHCrossRefMathSciNetGoogle Scholar
  34. [EM86]
    D. Eisenberg and A. D. McLachlan. Solvation energy in protein folding and binding. Nature (London), 319:199–203, 1986.CrossRefGoogle Scholar
  35. [Fis94]
    E. Fischer. Einfluss der configuration auf die wirkung derenzyme. Ber. Dtsch. Chem. Ges., 27:2985–2993, 1894.CrossRefGoogle Scholar
  36. [GA93]
    R. F. Gesteland and J. A. Atkins. The RNA World: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory Press, Plainview, NY, 1993.Google Scholar
  37. [Gar99]
    M. Garland. Multiresolution modeling: survey and future opportunities. In Eurographics State of the Art Report, 1999.Google Scholar
  38. [GP95]
    J.A. Grant and B.T. Pickup. A Gaussian description of molecular shape. J. Phys. Chem., 99:3503–3510, 1995.CrossRefGoogle Scholar
  39. [GS67]
    K. D. Gibson and H. A. Scheraga. Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease s-peptide. Proc. Natl. Acad. Sci. (USA), 58:420–427, 1967.CrossRefGoogle Scholar
  40. [HB94]
    W. Heiden and J. Brickmann. Segmentation of protein surfaces using fuzzy logic. J. Mol Graphics., 12:106–115, 1994..CrossRefGoogle Scholar
  41. [Hop96]
    H. Hoppe. Progressive meshes. In ACM SIGGRAPH, pages 99-108, 1996.Google Scholar
  42. [Kau59]
    W. Kauzmann. Some factors in the interpretation of protein denaturation. Adv.Protein Chem. 14:1–63, 1959.CrossRefGoogle Scholar
  43. [KDS+60]
    J. Kendrew, R. Dickerson, B. Strandberg, R. Hart, D. Davies, and D. Philips. Structure of myoglobin: a three dimensional Fourier synthesis at 2 angstrom resolution. Nature (London), 185:422–427, 1960.CrossRefGoogle Scholar
  44. [KL99]
    P. Koehl and M. Levitt. A brighter future for protein structure prediction. Nature Struct. Biol., 6:108–111, 1999.CrossRefGoogle Scholar
  45. [KL02]
    P. Koehl and M. Levitt. Protein topology and stability defines the space of allowed sequences. Proc. Natl. Acad. Sci. (USA), 99:1280–1285, 2002.CrossRefGoogle Scholar
  46. [KM02]
    M. Karplus and J. A. McCammon. Molecular dynamics simulations of biomolecules. Nature Struct. Biol., 9:646–652, 2002.CrossRefGoogle Scholar
  47. [Koe06]
    P. Koehl. Electrostatics calculations: latest methodological advances. Curr. Opin. Struct. Biol., 16:142–151, 2006.CrossRefGoogle Scholar
  48. [Kol65]
    W. L. Koltun. Precision space-filling atomic models. Biopolymers, 3:665–679, 1965.CrossRefGoogle Scholar
  49. [KWPB98]
    K. T. Simons K. W. Plaxco and D. Baker. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol., 277:985–994, 1998.CrossRefGoogle Scholar
  50. [LA05]
    J. Lien and N. M. Amato. Approximate convex decomposition of polyhedra. Technical report, Technial Report TR05-001, Texas A&M University, 2005.Google Scholar
  51. [LCW99]
    K. Lum, D. Chandler, and J. D. Weeks. Hydrophobicity at small and large length scales. J. Phys. Chem. B., 103:4570–4577, 1999.CrossRefGoogle Scholar
  52. [LEF+98a]
    J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam. Analytical shape computation of macromolecules. I. Molecular area and volume through alpha shape. Proteins: Struct. Func. Genet., 33:1–17, 1998.CrossRefGoogle Scholar
  53. [LEF+ 98b]
    J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam. Analytical shape computation of macromolecules. II. Inaccessible cavities in proteins. Proteins: Struct. Func. Genet., 33:18–29, 1998.CrossRefGoogle Scholar
  54. [LEW98]
    J. Liang, H. Edelsbrunner, and C. Woodward. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Prot. Sci., 7:1884–1897, 1998.CrossRefGoogle Scholar
  55. [LR71]
    B. Lee and F. M. Richards. Interpretation of protein structures: estimation of static accessibility. J. Mol. Biol., 55:379–400, 1971.CrossRefGoogle Scholar
  56. [LWO04]
    Y. Levy, P. G. Wolynes, and J. N. Onuchic. Protein topology determines binding mechanism. Proc. Natl. Acad. Sci. (USA), 101:511–516, 2004.CrossRefGoogle Scholar
  57. [ME99]
    V. Muñoz and W. A. Eaton. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl. Acad. Sci. (USA), 96:11311–11316, 1999.CrossRefGoogle Scholar
  58. [MKE01]
    J. C. Mitchell, R. Kerr, and L. F. Ten Eyck. Rapid atomic density measures for molecular shape characterization. J. Mol. Graph. Model., 19:324–329, 2001.Google Scholar
  59. [NWB+06]
    V. Natarajan, Y. Wang, P. Bremer, V. Pascucci, and B. Hamann. Segmenting molecular surfaces. Computer Aided Geometric Design, 23:495–509, 2006.MATHCrossRefMathSciNetGoogle Scholar
  60. [OONS87]
    T. Ooi, M. Oobatake, G. Nemethy, and H. A. Scheraga. Accessible surface-areas as a measure of the thermodynamic parameters of hydra-tion of peptides. Proc. Natl. Acad. Sci. (USA), 84:3086–3090, 1987.CrossRefGoogle Scholar
  61. [PRC+60]
    M. Perutz, M. Rossmann, A. Cullis, G. Muirhead, G. Will, and A. North. Structure of hemoglobin: a three-dimensional Fourier synthesis at 5.5 angstrom resolution, obtained by X-ray analysis. Nature (London), 185:416–422, 1960.CrossRefGoogle Scholar
  62. [Ric77]
    F. M. Richards. Areas, volumes, packing and protein structure. Ann. Rev. Biophys. Bioeng., 6:151–176, 1977.CrossRefGoogle Scholar
  63. [Ric84]
    T. J. Richmond. Solvent accessible surface area and excluded volume in proteins. J. Molecular Biology, 178:63–89, 1984.CrossRefGoogle Scholar
  64. [SB94]
    T. Simonson and A. T. Brünger. Solvation free-energies estimated from macroscopic continuum theory: an accuracy assessment. J. Phys. Chem., 98:4683–4694, 1994.CrossRefGoogle Scholar
  65. [TSPA92]
    I. Tunon, E. Silla, and J. L. Pascual-Ahuir. Molecular-surface area and hydrophobic effect. Protein Eng., 5:715–716, 1992.CrossRefGoogle Scholar
  66. [VJ93]
    A. Varshney and F. P. Brooks Jr. Fast analytical computation of richard’s smooth molecular surface. In Proc. IEEE Visualization, pages 300-307, 1993.Google Scholar
  67. [WAB+ 05]
    Y. Wang, P. Agarwal, P. Brown, H. Edelsbrunner, and J. Rudulph. Fast geometric algorithm for rigid protein docking. In Proc. 10th. Pacific Symposium on Biocomputing (PSB), pages 64-75, 2005.Google Scholar
  68. [WC53]
    J. D. Watson and F. H. C. Crick. A structure for Deoxyribose Nucleic Acid. Nature (London), 171:737–738, 1953.CrossRefGoogle Scholar
  69. [WT90]
    R. H. Wood and P. T. Thompson. Differences between pair and bulk hydrophobic interactions. Proc. Natl. Acad. Sci. (USA), 87:946–949, 1990.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Vijay Natarajan
    • 1
  • Patrice Koehl
    • 2
  • Yusu Wang
    • 3
  • Bernd Hamann
    • 4
  1. 1.Department of Computer Science and Automation Supercomputer Education and Research CentreIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Computer Science Genome CenterUniversity of CaliforniaDavisUSA
  3. 3.Department of Computer Science and EngineeringThe Ohio State UniversityColumbusUSA
  4. 4.Institute for Data Analysis and Visualization Department of Computer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations