Skip to main content

Global Illumination of White Matter Fibers from DT-MRI Data

  • Conference paper
Visualization in Medicine and Life Sciences

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

We describe our recent work in applying physically-based global illumination to fiber tractography. The geometry of the fiber tracts is derived from diffusion tensor magnetic resonance imaging (DT-MRI) datasets acquired from the white matter in the human brain. Most visualization systems display such fiber tracts using local illumination, a rendering technology provided by the video card on a typical desktop computer. There is indirect evidence that the human visual system perceives the shape of a fiber more quickly and more accurately when physically-based illumination is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. David C. Banks and Kevin Beason. Pre-computed global illumination of mr and dti data. In International Society for Magnetic Resonance in Medicine 14th Scientific Meeting (ISMRM ’06), page 531, 2006. Seattle, WA, 6-12 May 2006, Abstract 2755.

    Google Scholar 

  2. A. Brun, H. Knutsson, H. J. Park, M. E. Shenton, and C.-F. Westin. Clustering fiber tracts using normalized cuts. In Seventh International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’04), pages 368-375, 2004. Rennes - Saint Malo, France.

    Google Scholar 

  3. William H. A. Beaudot and Kathy T. Mullen. Processing time of contour integration: the role of colour, contrast, and curvature. Perception, 30:833-853, 2001.

    Article  Google Scholar 

  4. Michael F. Cohen and Donald P. Greenberg. The hemi-cube: A radiosity solution for complex environments. In Computer Graphics (Proceedings of SIGGRAPH 85), pages 31-40, August 1985.

    Google Scholar 

  5. Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. In Computer Graphics (Proceedings of SIGGRAPH 84), pages 137-145, July 1984.

    Google Scholar 

  6. Donald P. Greenberg, Michael Cohen, and Kenneth E. Torrance. Radiosity: A method for computing global illumination. The Visual Computer, 2(5):291-297, September 1986.

    Article  Google Scholar 

  7. D. Gering, A. Nabavi, R. Kikinis, N. Hata, L. Odonnell, W. Eric L. Grimson, F. Jolesz, P. Black, and W. Wells III. An integrated visualization system for surgical planning and guidance using image fusion and an open mr. Journal of Magnetic Resonance Imaging, 13:967-975, 2001.

    Article  Google Scholar 

  8. Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, 2001.

    Google Scholar 

  9. Jayme Jacobson and Steffen Werner. Why cast shadows are expendable: Insensitivity of human observers and the inherent ambiguity of cast shadows in pictorial art. Perception, 33:1369-1383, 2004.

    Article  Google Scholar 

  10. James T. Kajiya. The rendering equation. In Computer Graphics (Proceedings of SIGGRAPH 86), pages 143-150, August 1986.

    Google Scholar 

  11. Gordon Kindlmann and Carl-Fredrik Westin. Diffusion tensor visualization with glyph packing. IEEE Transactions on Visualization and Computer Graphics (Proceedings Visualization / Information Visualization 2006), 12(5), September-October 2006.

    Google Scholar 

  12. P. Mamassian, D. C. Knill, and D. Kersten. The perception of cast shadows. Trends in Cognitive Sciences, 2:288-295, 1998.

    Article  Google Scholar 

  13. A. Michotte, G. Thines, and G. Crabbe. Les complements amodaux des structures perceptives. In G. Thines, A. Costall, and G. Butterworth, editors, Michotte’s Experimental Phenomenology of Perception, pages140-167, Hillsdale, NJ,1991. Lawrence Erlbaum Associates.

    Google Scholar 

  14. C. Madison, W. Thompson, D. Kersten, P. Shirley, and B. Smits. Use of interreflection and shadow for surface contact. Perception and Psychophysics, 63:187-194, 2001.

    Google Scholar 

  15. Y. Ostrovsky, P. Cavanagh, and P. Sinha. Perceiving illumination inconsistencies in scenes. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA, November 2001.

    Google Scholar 

  16. Lauren O’Donnell, Marek Kubicki, Martha E. Shenton, Mark E. Dreusicke W. Eric L. Grimson, and Carl-Fredrik Westin. A method for clustering white matter fiber tracts. American Journal of Neuroradiology (AJNR), 27(5):1032-1036, 2006.

    Google Scholar 

  17. Lauren O’Donnell and Carl-Fredrik Westin. White matter tract clustering and correspondence in populations. In Eighth International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI ’05), Lecture Notes in Computer Science, pages 140-147, 2005. Palm Springs, CA, USA.

    Google Scholar 

  18. Gijs Plomp, Chie Nakatani, Valérie Bonnardel, and Cees van Leeuwen. Amodal completion as reflected by gaze durations. Perception, 33:1185-1200, 2004.

    Google Scholar 

  19. Ronald A. Rensink and Patrick Cavanagh. The influence of cast shadows on visual search. Perception, 33:1339-1358, 2004.

    Article  Google Scholar 

  20. Will Schroeder, Ken Martin, and Bill Lorensen. Visualization Toolkit: An Object-Oriented Approach to 3D Graphics. Kitware, 2006.4th edition.

    Google Scholar 

  21. A. B. Sekuler, S. E. Palmer, and C. Flynn. Local and global processes in visual completion. Psychological Science, 5:260-267, 1994.

    Article  Google Scholar 

  22. C.-F. Westin, S. E. Maier, H. Mamata, A. Nabavi, F. A. Jolesz, and R. Kikinis. Processing and visualization of diffusion tensor MRI. Medical Image Analysis, 6(2):93-108, 2002.

    Article  Google Scholar 

  23. Josie Wernecke and the Open Inventor Architecture Group. The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor. Addison-Wesley Professional, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Banks, D.C., Westin, CF. (2008). Global Illumination of White Matter Fibers from DT-MRI Data. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_10

Download citation

Publish with us

Policies and ethics