An MAS Infrastructure for Implementing SWSA Based Semantic Services

  • Önder Gürcan
  • Geylani Kardas
  • Özgür Gümüs
  • Erdem Eser Ekinci
  • Oguz Dikenelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4504)


The Semantic Web Services Initiative Architecture (SWSA) describes the overall process of semantic service execution in three phases: discovery, engagement and enactment. To accomplish the specified requirements of these phases, it defines a conceptual model which is based on semantic service agents that provide and consume semantic web services and includes architectural and protocol abstractions. In this paper, an MAS infrastructure is defined which fulfills fundamental requirements of SWSA’s conceptual model including all its sub-processes. Based on this infrastructure, requirements of a planner module is identified and has been implemented. The developed planner has the capability of executing plans consisting of special tasks for semantic service agents in a way that is described in SWSA. These special tasks are predefined to accomplish the requirements of SWSA’s sub-processes and they can be reused in real plans of semantic service agents both as is and as specialized according to domain requirements.


Service Discovery Composite Service Candidate Service Service Execution Semantic Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burstein, M., et al.: A semantic web services architecture. IEEE Internet Computing 9(5), 72–81 (2005)CrossRefGoogle Scholar
  2. 2.
    Varga, L.Z., Hajnal, Á.: Engineering Web Service Invocations from Agent Systems. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Varga, L.Z., Hajnal, Á., Werner, Z.: An Agent Based Approach for Migrating Web Services to Semantic Web Services. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 381–390. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Fensel, D., Bussler, C.: The web service modeling framework wsmf. Electronic Commerce Research and Applications 1(2), 113–137 (2002)CrossRefGoogle Scholar
  5. 5.
    Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: IEEE International Conference on Systems, Man and Cybernetics, Vol. 2, pp. 1918–1925. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  6. 6.
    Nguyen, T.X., Kowalczyk, R.: Ws2jade: Integrating web service with jade agents. In: AAMAS’05 Workshop on Service-Oriented Computing and Agent-Based Engineering (SOCABE’2005) (2005)Google Scholar
  7. 7.
    Dikenelli, O., et al.: Seagent: A platform for developing semantic web based multi agent systems. In: AAMAS, pp. 1271–1272. ACM, New York (2005)CrossRefGoogle Scholar
  8. 8.
    Sycara, K.P., et al.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Dikenelli, O., et al.: Engineering a multi agent platform with dynamic semantic service discovery and invocation capability. In: Eymann, T., et al. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 141–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Kardas, G., Gümüs, Ö., Dikenelli, O.: Applying semantic capability matching into directory service structures of multi agent systems. In: Yolum, p., et al. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 452–461. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Zeng, L., et al.: Quality driven web services composition. In: WWW ’03: Proceedings of the 12th international conference on World Wide Web, Budapest, Hungary, pp. 411–421. ACM Press, New York (2003), doi:10.1145/775152.775211CrossRefGoogle Scholar
  12. 12.
    Cardoso, J., et al.: Quality of service for workflows and web service processes. J. Web Sem. 1(3), 281–308 (2004)Google Scholar
  13. 13.
    Sacerdoti, E.: The nonlinear nature of plans. In: International Joint Conference on Artificial Intelligence (1975)Google Scholar
  14. 14.
    Tate, A.: Generation project networks. In: International Joint Conference on Artificial Intelligence, pp. 888–893 (1977)Google Scholar
  15. 15.
    Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for htn planning. Ann. Math. Artif. Intell. 18(1), 69–93 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sycara, K., Williamson, M., Decker, K.: Unified information and control flow in hierarchical task networks. In: Working Notes of the AAAI-96 workshop ’Theories of Action, Planning, and Control’ (August 1996)Google Scholar
  17. 17.
    Graham, J.R., Decker, K., Mersic, M.: Decaf - a flexible multi agent system architecture. Autonomous Agents and Multi-Agent Systems 7(1-2), 7–27 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Önder Gürcan
    • 1
  • Geylani Kardas
    • 2
  • Özgür Gümüs
    • 1
  • Erdem Eser Ekinci
    • 1
  • Oguz Dikenelli
    • 1
  1. 1.Ege University, Department of Computer Engineering, 35100 Bornova, IzmirTurkey
  2. 2.Ege University, International Computer Institute, 35100 Bornova, Izmir 

Personalised recommendations