Advertisement

On Efficiency Group Multicasting Algorithm with Multiple Minimum Steiner Trees

  • Moonseong Kim
  • Minseok Kang
  • Hyunseung Choo
  • Jong S. Yang
  • Young-Cheol Bang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4489)

Abstract

In this paper, we study the problem of constructing minimum cost group multicast trees with bandwidth reservations. Our algorithm uses multiple candidate paths to select a path from source to each destination member in each multicast tree construction. We show that our proposed algorithm performs better in terms of total tree cost for real life networks over well-known algorithm GKMB. The enhancement is up to about 10% ~ 25% in terms of normalized surcharge for the GKMB tree cost.

Keywords

Group Multicast Routing Algorithm Minimum Steiner Trees Group KMB (GKMB) Algorithm and Minimum Cost Multicast Tree (MCMT) Algorithm 

References

  1. 1.
    Jia, X., Wang, L.: A group multicast routing algorithm by using multiple minimum Steiner trees. Elsevier Computer Communications 20, 750–758 (1997)Google Scholar
  2. 2.
    Kou, L., Markowsky, G., Berman, L.: A fast algorithm for Steiner trees. Acta Informatica 15, 141–145 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bang, Y.-C., Chung, S.-T., Kim, M., Joo, S.-S.: On Multicast Communications with Minimum Resources. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) HPCC 2005. LNCS, vol. 3726, pp. 4–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Doar, M., Leslie, I.: How Bad is Naive Multicast Routing? In: Proceeding of IEEE INFOCOM 93, pp. 82–89 (1993)Google Scholar
  5. 5.
    Ajuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  6. 6.
    Prim, R.C.: Shortest Connection Networks And Some Generalizations. Bell System Techn. J. 36, 1389–1401 (1957)Google Scholar
  7. 7.
    Waxman, B.W.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6(9), 1617–1622 (1988)CrossRefGoogle Scholar
  8. 8.
    Doar, M.: Multicast in the ATM environment. Ph.D dissertation, Cambridge University, Computer Lab. (September 1993)Google Scholar
  9. 9.
    Doar, M.: A Better Mode for Generating Test Networks. In: Proceeding of IEEE GLOBECOM 96, pp. 86–93 (1996)Google Scholar
  10. 10.
    Toh, C.-K.: Performance Evaluation of Crossover Switch Discovery Algorithms for Wireless ATM LANs. In: Proceeding of IEEE INFOCOM 96, pp. 1380–1387 (1996)Google Scholar
  11. 11.
    Zegura, E.W., Calvert, K.L., Bhattacharjee, S.: How to model an Internetwork. In: Proceeding of IEEE INFOCOM 96, pp. 594–602 (1996)Google Scholar
  12. 12.
    Calvert, K.L., Doar, M., Doar, M.: Modelling Internet Topology. IEEE Communications Magazine, 160–163 (June 1997)Google Scholar
  13. 13.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic Models for the Web Graph. In: Proceeding of the 41th IEEE Symposium on Foundations of Computer Science (2000)Google Scholar
  14. 14.
    Rodionov, A.S., Choo, H.: On Generating Random Network Structures: Connected Graphs. In: Kahng, H.-K., Goto, S. (eds.) ICOIN 2004. LNCS, vol. 3090, pp. 483–491. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Kompella, V.P., Pasquale, J.C., Polyzoa, G.C.: Multicast routing for multimedia communications. IEEE/ACM Transactions on Networking 1(3), 286–292 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Moonseong Kim
    • 1
  • Minseok Kang
    • 2
  • Hyunseung Choo
    • 1
  • Jong S. Yang
    • 3
  • Young-Cheol Bang
    • 2
  1. 1.School of Info. and Comm. Engineering, Sungkyunkwan UniversityKorea
  2. 2.Dep. of Computer Engineering, Korea Polytechnic UniversityKorea
  3. 3.Korea Institute of Industrial Technology Evaluation and PlanningKorea

Personalised recommendations