Composing Different Models of Computation in Kepler and Ptolemy II

  • Antoon Goderis
  • Christopher Brooks
  • Ilkay Altintas
  • Edward A. Lee
  • Carole Goble
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4489)

Abstract

A model of computation (MoC) is a formal abstraction of execution in a computer. There is a need for composing MoCs in e-science. Kepler, which is based on Ptolemy II, is a scientific workflow environment that allows for MoC composition. This paper explains how MoCs are combined in Kepler and Ptolemy II and analyzes which combinations of MoCs are currently possible and useful. It demonstrates the approach by combining MoCs involving dataflow and finite state machines. The resulting classification should be relevant to other workflow environments wishing to combine multiple MoCs.

Keywords

Model of computation scientific workflow Kepler Ptolemy II 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)Google Scholar
  2. 2.
    Brooks, C., Lee, E.A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H. (eds.): ”Heterogeneous Concurrent Modeling and Design in Java”, Vol. 1-3, Tech. Report UCB/ERL M05/21, University of California, Berkeley (July 15, 2005)Google Scholar
  3. 3.
    Kahn, G., MacQueen, D.B.: Coroutines and Networks of Parallel Processes. In: Gilchrist, B. (ed.) Information Processing 77, North-Holland Publishing Co., Amsterdam (1977)Google Scholar
  4. 4.
    Lee, E.A., Sangiovanni-Vincentelli, A.: A Framework for Comparing Models of Computation. IEEE Transactions on CAD 17(12) (1998)Google Scholar
  5. 5.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific Workflow Management and the KEPLER System. Concurrency & Computation: Practice & Experience, Special issue on scientific workflows (2005)Google Scholar
  6. 6.
    Parks, T.M.: Bounded Scheduling of Process Networks. UCB/ERL-95-105, University of California, Berkeley (December 1995)Google Scholar
  7. 7.
    Sudholt, W., Altintas, I., Baldridge, K.K.: Scientific workflow infrastructure for computational chemistry on the grid. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 69–76. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Antoon Goderis
    • 1
  • Christopher Brooks
    • 2
  • Ilkay Altintas
    • 3
  • Edward A. Lee
    • 2
  • Carole Goble
    • 1
  1. 1.School of Computer Science, University of ManchesterUK
  2. 2.Department of EECS, UC BerkeleyUSA
  3. 3.San Diego Supercomputer Center, UC San DiegoUSA

Personalised recommendations