Round-Efficient Secure Computation in Point-to-Point Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)


Essentially all work studying the round complexity of secure computation assume broadcast as an atomic primitive. Protocols constructed under this assumption tend to have very poor round complexity when compiled for a point-to-point network due to the high overhead of emulating each invocation of broadcast. This problem is compounded when broadcast is used in more than one round of the original protocol due to the complexity of handling sequential composition (when using round-efficient emulation of broadcast).

We argue that if the goal is to optimize round complexity in point-to-point networks, then it is preferable to design protocols — assuming a broadcast channel — minimizing the number of rounds in which broadcast is used rather than minimizing the total number of rounds. With this in mind, we present protocols for secure computation in a number of settings that use only a single round of broadcast. In all cases, we achieve optimal security threshold for adaptive adversaries, and obtain protocols whose round complexity (in a point-to-point network) improves on prior work.


Secure Computation Broadcast Channel Single Round Broadcast Protocol Honest Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 560–572. Springer, Heidelberg (1990)Google Scholar
  2. 2.
    Beaver, D.: Secure multi-party protocols and zero-knowledge proof systems tolerating a faulty minority. Journal of Cryptology 4(2), 75–122 (1991)zbMATHCrossRefGoogle Scholar
  3. 3.
    Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland, United States, pp. 503–513. ACM Press, New York (1990), doi:10.1145/100216.100287Google Scholar
  5. 5.
    Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement protocols. In: 2nd Annual ACM Symposium on Principles of Distributed Computing (PODC), ACM Press, New York (1983)Google Scholar
  6. 6.
    Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant time. Distributed Computing 16(4), 249–262 (2003)CrossRefGoogle Scholar
  7. 7.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)Google Scholar
  8. 8.
    Chaum, D., Crepeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proc. 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, New York (1988)Google Scholar
  9. 9.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Damgård, I.B., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Computing 12(4), 656–666 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Info. Proc. Lett. 14(4), 183–186 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: 22nd Annual ACM Symposium on Principles of Distributed Computing, Boston, Massachusetts, pp. 211–220. ACM Press, New York (2003), doi:10.1145/872035.872066Google Scholar
  15. 15.
    Fitzi, M., Garay, J.A., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-optimal and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Garay, J.A., Moses, Y.: Fully polynomial Byzantine agreement for n > 3t processors in t + 1 rounds. SIAM J. Comput. 27(1), 247–290 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: 33rd Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, pp. 580–589. ACM Press, New York (2001), doi:10.1145/380752.380853Google Scholar
  18. 18.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computation with applications to threshold cryptography. In: Proc. 17th Annual ACM Symposium on Principles of Distributed Computing, pp. 101–111. ACM Press, New York (1998)Google Scholar
  20. 20.
    Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D. (ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party computation with optimal resilience. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006), Full version, available at CrossRefGoogle Scholar
  23. 23.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982), doi:10.1145/357172.357176zbMATHCrossRefGoogle Scholar
  24. 24.
    Lindell, Y., Lysyanskaya, A., Rabin, T.: Sequential composition of protocols without simultaneous termination. In: Proc. 21st Annual ACM Symposium on Principles of Distributed Computing, pp. 203–212. ACM Press, New York (2002)Google Scholar
  25. 25.
    Micali, S., Rabin, T.: Collective coin tossing without assumptions nor broadcasting. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 253–266. Springer, Heidelberg (1991)Google Scholar
  26. 26.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980), doi:10.1145/322186.322188zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and Byzantine agreement for t ≥ n/3. Technical Report RZ 2882 (#90830), IBM Research (1996)Google Scholar
  28. 28.
    Rabin, M.: Randomized Byzantine generals. In: Proc. 24th IEEE Symposium on Foundations of Computer Science, pp. 403–409. IEEE Computer Society Press, Los Alamitos (1983)Google Scholar
  29. 29.
    Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM 41(6), 1089–1109 (1994), doi:10.1145/195613.195621CrossRefMathSciNetGoogle Scholar
  30. 30.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proc. 21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, United States, pp. 73–85. ACM Press, New York (1989), doi:10.1145/73007.73014Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Dept. of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations