Conditional Computational Entropy, or Toward Separating Pseudoentropy from Compressibility

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4515)


We study conditional computational entropy: the amount of randomness a distribution appears to have to a computationally bounded observer who is given some correlated information. By considering conditional versions of HILL entropy (based on indistinguishability from truly random distributions) and Yao entropy (based on incompressibility), we obtain:

  • a separation between conditional HILL and Yao entropies (which can be viewed as a separation between the traditional HILL and Yao entropies in the shared random string model, improving on Wee’s 2004 separation in the random oracle model);

  • the first demonstration of a distribution from which extraction techniques based on Yao entropy produce more pseudorandom bits than appears possible by the traditional HILL-entropy-based techniques;

  • a new, natural notion of unpredictability entropy, which implies conditional Yao entropy and thus allows for known extraction and hardcore bit results to be stated and used more generally.


Random Oracle Conditional Entropy Random String Common Reference String Distribution Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [BDMP91]
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM Journal on Computing 20(6), 1084–1118 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BFM88]
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, 2–4 May 1988, pp. 103–112 (1988)Google Scholar
  3. [BSW03]
    Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 200–215. Springer, Heidelberg (2003)Google Scholar
  4. [CW79]
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [DH76]
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [DORS06]
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. Technical Report 2003/235, Cryptology ePrint archive (2006),, Previous version appeared at EUROCRYPT 2004
  7. [GKR04]
    Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over non-DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 361–381. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [GL89]
    Goldreich, O., Levin, L.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, Seattle, Washington, 15-17 May 1989, pp. 25–32 (1989)Google Scholar
  9. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [HILL99]
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Imp99]
    Impagliazzo, R.: Remarks in open problem session at the dimacs workshop on pseudorandomness and explicit combinatorial constructions (1999)Google Scholar
  12. [LMS05]
    Lepinski, M., Micali, S., Shelat, A.: Fair-zero knowledge. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. [Nao96]
    Naor, M.: Evaluation be easier than generation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, 22-24 May 1996, pp. 74–83 (1996)Google Scholar
  14. [NZ96]
    Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–53 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [RT00]
    Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM Journal on Computing 13(1), 2–24 (2000)zbMATHMathSciNetGoogle Scholar
  16. [RW04]
    Renner, R., Wolf, S.: Smooth rényi entropy and applications. In: Proceedings of IEEE International Symposium on Information Theory, June 2004, p. 233 (2004)Google Scholar
  17. [RW05]
    Renner, R.S., Wolf, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. [Sha48]
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656 (1948), Reprinted in: Slepian, D. (ed.), Key Papers in the Development of Information Theory, IEEE Press, New York (1974)Google Scholar
  19. [Sha02]
    Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002)zbMATHMathSciNetGoogle Scholar
  20. [Tre99]
    Trevisan, L.: Construction of extractors using pseudo-random generators (extended abstract). In: STOC, pp. 141–148 (1999)Google Scholar
  21. [TSZ01]
    Ta-Shma, A., Zuckerman, D.: Extractor codes. In: STOC, pp. 193–199 (2001)Google Scholar
  22. [TVZ05]
    Trevisan, L., Vadhan, S.P., Zuckerman, D.: Compression of samplable sources. Technical Report TR05-012, Electronic Colloquium on Computational Complexity, ECCC (2005)Google Scholar
  23. [Wee04]
    Wee, H.: On pseudoentropy versus compressibility. In: IEEE Conference on Computational Complexity, pp. 29–41. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  24. [Yao82]
    Yao, A.C.: Theory and applications of trapdoor functions. In: 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, 3-5 November 1982, pp. 80–91. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Boston UniversityBostonUSA
  2. 2.Work performed in part while visiting the Institute for Pure and Applied Mathematics at UCLAAcademia SinicaNankang, TaipeiTaiwan

Personalised recommendations