Skip to main content

Modeling, Animation, and Rendering of Human Figures

  • Chapter
Three-Dimensional Television

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Badler and S. Smoliar, “Digital representations of human movement,” ACM Computing Surveys, Vol. 11, No. 1, pp. 19–38, 1979.

    Article  Google Scholar 

  2. D. Herbison-Evans, “Nudes 2: A numeric utility displaying ellipsoid solids,” ACM Computer Graphics (Proc. of SIGGRAPH’78), pp. 354–356, 1978.

    Google Scholar 

  3. J. Korein, A Geometric Investigation of Reach. Cambridge, MA: The MIT Press, 1985.

    MATH  Google Scholar 

  4. N. Magnenat-Thalmann and D. Thalmann, Computer Animation: Theory and Practice. Berlin: Springer-Verlag, 1985.

    MATH  Google Scholar 

  5. N. Badler and S. Smoliar, “Graphical behavior and animated agents,” in ACM Siggraph Course Notes # 17, Advanced Techniques in Human Modeling, Animation and Rendering, pp. 19–38, 1992.

    Google Scholar 

  6. N. Magnenat-Thalmann and D. Thalmann, Synthetic Actors in 3D Computer-Generated Films. New York: Springer-Verlag, 1990.

    Google Scholar 

  7. K. Komatsu, “Human skin model capable of natural shape variation,” The Visual Computer, Vol. 3, No. 5, pp. 265–271, 1988.

    Article  Google Scholar 

  8. N. Magnenat-Thalmann and D. Thalmann, “The direction of synthetic actors in the film rendez-vous à montreàl,” IEEE Computer Graphics and Applications, Vol. 7, No. 12, pp. 9–19, 1987.

    Article  Google Scholar 

  9. M. DeLoura, Game Programming Gems. Rockland, MA: Charles River Media Inc., 2000.

    Google Scholar 

  10. W. Sun, A. Hilton, R. Smith, and J. Illingworth, “Layered animation of captured data,” The Visual Computer, Vol. 17, No. 8, pp. 457–474, 2001.

    Google Scholar 

  11. K. Singh and E. Kokkevis, “Skinning characters using surface-oriented free form deformations,” in Proceedings of Graphics Interface, pp. 35–42, 2000.

    Google Scholar 

  12. K. Lander, “Skin them bones,” Game Developer, pp. 11–16, 1998.

    Google Scholar 

  13. P. P. Sloan, C. F. Rose, and M. Cohen, “Shape by example,” in Proceedings of the Symposium on Interactive 3D Graphics, pp. 135–143, 2001.

    Google Scholar 

  14. D. Talbot, “Accurate characterization of skin deformations using range data,” Master’s thesis, University of Toronto, 1998.

    Google Scholar 

  15. J. Blinn, “A generalization of algebraic surface drawing,” ACM Transactions on Graphics, Vol. 1, pp. 235–256, 1982.

    Article  Google Scholar 

  16. S. Yoshimoto, “Ballerinas generated by a personal computer,” The Journal of Visualization and Computer Animation, Vol. 3, No. 1, pp. 85–90, 1992.

    Article  MathSciNet  Google Scholar 

  17. J. Bloomenthal and K. Shoemake, “Convolution surfaces,” ACM Computer Graphics (Proc. of SIGGRAPH’91), Vol. 25, No. 4, pp. 251–256, 1991.

    Article  Google Scholar 

  18. A. Leclercq, S. Akkouche, and E. Galin, “Mixing triangle meshes and implicit surfaces in character animation,” in Proceedings of Animation and Simulation, pp. 37–47, 2001.

    Google Scholar 

  19. D. Thalmann, J. Shen, and E. Chauvineau, “Fast human body deformations for animation and vr applications,” in Proceedings of Computer Graphics International, pp. 166–174, 1996.

    Google Scholar 

  20. M. P. Gascuel, “An implicit formulation for precise contact modeling between flexible solids,” ACM Computer Graphics (Proc. of SIGGRAPH’93), pp. 313–320, 1993.

    Google Scholar 

  21. The National Library of Medicine, “The visible human project,” available at http://www.nlm.nih.gov/research/visible/visible_human.html.

    Google Scholar 

  22. G. Hirota, S. Fisher, A. State, C. Lee, and H. Fuchs, “An implicit finite element method for elastic solids in contact,” in Proceedings of Computer Animation, pp. 136–146, 2001.

    Google Scholar 

  23. J. Lasseter, “Principles of traditional animation applied to 3D computer animation,” ACM Computer Graphics (Proc. of SIGGRAPH’87), Vol. 21, No. 4, pp. 35–44, 1987.

    Article  Google Scholar 

  24. J. E. Chadwick, D. R. Haumann, and R. E. Parent, “Layered construction for deformable animated characters,” ACM Computer Graphics (Proc. of SIGGRAPH’89), Vol. 23, No. 3, pp. 243–252, 1989.

    Article  Google Scholar 

  25. J. Wilhelms and A. Van Gelder, “Anatomically based modeling,” ACM Computer Graphics (Proc. of SIGGRAPH’97), pp. 173–180, 1997.

    Google Scholar 

  26. F. Scheepers, R. Parent, W. Carlson, and S. May, “Anatomy based modeling of the human musculature,” ACM Computer Graphics (Proc. of SIGGRAPH’97), pp. 163–172, 1997.

    Google Scholar 

  27. L. Porcher-Nedel, “Anatomic modeling of human bodies using physically-based muscle simulation,” Ph.D. dissertation, Swiss Federal Institute of Technology, 1998.

    Google Scholar 

  28. F. Scheepers, R. Parent, F. May, and W. Carlson, “Procedural approach to modeling and animating the skeletal support of the upper limb,” Department of Computer and Information Science, The Ohio State University, Tech. Rep. OSU-ACCAD-1/96/TR1, 1996.

    Google Scholar 

  29. W. Maurel and D. Thalmann, “Human shoulder modeling including scapulo-thoracic constraint and joint sinus cones,” Computers & Graphics, Vol. 24, No. 2, pp. 203–218, 2000.

    Article  Google Scholar 

  30. T. Sederberg and S. Parry, “Free-from deformation of solid geometric models,” ACM Computer Graphics (Proc. of SIGGRAPH’86), Vol. 20, No. 4, pp. 151–160, 1986.

    Article  Google Scholar 

  31. L. Moccozet, “Hand modeling and animation for virtual humans,” Ph.D. dissertation, University of Geneva, 1996.

    Google Scholar 

  32. R. Turner and D. Thalmann, “The elastic surface layer model for animated character construction,” in Proceedings of Computer Graphics International, pp. 399–412, 1993.

    Google Scholar 

  33. L. Nedel and D. Thalmann, “Real time muscle deformations using mass-spring systems,” in Proceedings of Computer Graphics International, pp. 156–165, 1998.

    Google Scholar 

  34. V. Ng-Thow-Hing and E. Fiume, “Application-specific muscle representations,” in Proceedings of Graphics Interface, pp. 107–115, 2002.

    Google Scholar 

  35. M. P. Gascuel, A. Verroust, and C. Puech, “A modeling system for complex deformable bodies suited to animation and collision processing,” The Journal of Visualization and Computer Animation, Vol. 2, No. 3, pp. 82–91, 1991.

    Article  Google Scholar 

  36. T. DeRose, M. Kass, and T. Truong, “Subdivision surfaces in character animation,” ACM Computer Graphics (Proc. of SIGGRAPH’98), Vol. 32, pp. 85–94, 1998.

    Google Scholar 

  37. M.-P. Cani-Gascuel and D. M., “Animation of deformable models using implicit surfaces,” IEEE Transactions on Visualization and Computer Graphics, Vol. 3, No. 1, pp. 39–50, 1997.

    Article  Google Scholar 

  38. A. Aubel, “Anatomically-based human body deformations,” Ph.D. dissertation, Swiss Federal Institute of Technology, 2002.

    Google Scholar 

  39. Humanoid Animation Working Group of Web3D Consortium, “ H-Anim 1.1: specification for a standard humanoid,” available at http://h-anim.org/.

    Google Scholar 

  40. O. Arikan, D. Forsyth, and D. O’Brien, “Motion synthesis from annotations,” ACM Transactions on Graphics (Proc. of SIGGRAPH’02), Vol. 22, No. 3, pp. 402–408, 2003.

    Article  Google Scholar 

  41. R. Boulic, P. Bécheiraz, L. Emering, and D. Thalmann, “Integration of motion control techniques for virtual human and avatar real-time animation,” in Proceedings of ACM Symposium on Virtual Reality Software and Technology (VRST’97), pp. 111–118, 1997.

    Google Scholar 

  42. J. Denavit and R. Hartenberg, “A kinematics notation for lower-pair mechanisms based on matrices,” Journal of Applied Mechanics (ASME), Vol. 22, No. 2, pp. 215–221, 1955.

    MATH  MathSciNet  Google Scholar 

  43. K. Sims and D. Zeltzer, “A figure editor and gait controller for task level animation,” in ACM Siggraph Course Notes # 4, Synthetic Actors: The Impact of Artificial Intelligence and Robotics on Animation, pp. 164–181, 1988.

    Google Scholar 

  44. J. Zhao and N. Badler, “Inverse kinematics positioning using nonlinear programming for highly articulated figures,” ACM Transactions on Graphics, Vol. 13, No. 4, pp. 313–336, 1994.

    Article  Google Scholar 

  45. T. Deepak, A. Goswami, and N. Badler, “Real-time inverse kinematics techniques for anthropomorphic limbs,” Graphical Models, Vol. 62, No. 5, pp. 353–388, 2000.

    Article  MATH  Google Scholar 

  46. N. Badler, K. Manoochehri, and G. Walters, “The dynamics of articulated rigid bodies for purpose of animation,” The Visual Computer, Vol. 7, No. 6, pp. 28–38, 1987.

    Google Scholar 

  47. M. Girard and A. Maciejewski, “Computational modeling for computer generation of legged figures,” ACM Computer Graphics (Proc. of SIGGRAPH’85), Vol. 19, No. 3, pp. 263–270, 1985.

    Article  Google Scholar 

  48. C. Welman, “Inverse kinematics and geometric constraints for articulated figure manipulation,” Master’s thesis, School of Computing Science, Simon Fraser University, 1993.

    Google Scholar 

  49. P. Baerlocher, “Inverse kinematics techniques of the interactive posture control of articulated figures,” Ph.D. dissertation, Departement D’Informatique, Ecole Polytechnique Fédérale de Lausanne, 2001.

    Google Scholar 

  50. M. Greeff, J. Haber, and H.-P. Seidel, “Nailing and pinning: Adding constraints to inverse kinematics,” in Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG’2005), Short Papers, 2005.

    Google Scholar 

  51. J. Wilhelms, Dynamic Experiences. San Mateo, CA: Morgan-Kaufmann Publishers, pp. 265–280, 1991.

    Google Scholar 

  52. W. Armstrong and M. Green, “The dynamics of articulated rigid bodies for purpose of animation,” The Visual Computer, Vol. 1, pp. 231–240, 1985.

    Article  Google Scholar 

  53. J. Wilhelms, “Virya – a motion control editor for kinematic and dynamic animation,” in Proceedings of Graphics Interface, pp. 141–146, 1986.

    Google Scholar 

  54. R. Barzel and A. H. Barr, “A modeling system based on dynamics,” ACM Computer Graphics (Proc. of SIGGRAPH’88), Vol. 22, No. 4, pp. 179–188, 1988.

    Article  Google Scholar 

  55. D. Forsey and J. Wilhelms, “Techniques for interactive manipulation of articulated bodies using dynamic analysis,” in Proceedings of Graphics Interface, pp. 8–15, 1988.

    Google Scholar 

  56. P. M. Isaacs and M. F. Cohen, “Controlling dynamic simulation with kinematic constraints, behavior functions and inverse dynamics,” ACM Computer Graphics (Proc. of SIGGRAPH’87), Vol. 21, No. 4, pp. 215–224, 1987.

    Article  Google Scholar 

  57. H. Ko and N. Badler, “Animating human locomotion in real-time using inverse dynamics,” IEEE Computer Graphics and Applications, Vol. 16, No. 2, pp. 50–59, 1996.

    Article  Google Scholar 

  58. N. Brotman and A. Netravali, “Motion interpolation by optimal control,” ACM Computer Graphics (Proc. of SIGGRAPH’88), Vol. 22, No. 4, pp. 309–315, 1988.

    Article  Google Scholar 

  59. M. Girard, Constrained Optimization of Articular Animal Movement in Computer Animation. San Mateo, CA: Morgan-Kaufmann Publishers, pp. 209–229, 1991.

    Google Scholar 

  60. P. Lee, S. Wei, J. Zhao, and N. Badler, “Strength guided motion,” ACM Computer Graphics (Proc. of SIGGRAPH’90), Vol. 24, No. 4, pp. 253–262, 1990.

    Article  Google Scholar 

  61. S. Loizidou and J. Clapworthy, Legged locomotion using HIDDS. Tokyo: Springer-Verlag, 1993.

    Google Scholar 

  62. T. Moeslund and E. Granum, “A survey of computer vision-based human motion capture,” Computer Vision and Image Understanding, Vol. 81, No. 3, pp. 231–268, 2001.

    Article  MATH  Google Scholar 

  63. G. Johansson, “Visual motion perception,” Scientific American, Vol. 232, No. 6, pp. 75-–80, 1975.

    Google Scholar 

  64. J. Carranza, C. Theobalt, A. Magnor, and H.-P. Seidel, “Free-viewpoint video of human actors,” ACM Transactions on Graphics (Proc. of SIGGRAPH’03), Vol. 22, No. 3, pp. 569-–577, 2003.

    Article  Google Scholar 

  65. A. Sundaresan and R. Chellappa, “Markerless motion capture using multiple cameras,” in Proceedings of the Computer Vision for Interactive and Intelligent Environment (CVIIE’05), 2005.

    Google Scholar 

  66. O. Arikan and D. Forsyth, “Interactive motion generation from examples,” ACM Transactions on Graphics (Proc. of SIGGRAPH’02), Vol. 21, No. 3, pp. 483–490, 2002.

    Google Scholar 

  67. A. Bruderlin and L. Williams, “Motion signal processing,” ACM Computer Graphics (Proc. of SIGGRAPH’95), pp. 97–104, 1995.

    Google Scholar 

  68. M. Unuma, K. Anjyo, and R. Tekeuchi, “Fourier principles for emotion-based human figure animation,” ACM Computer Graphics (Proc. of SIGGRAPH’95), Vol. 29, No. 4, pp. 91–96, 1995.

    Google Scholar 

  69. K. Huang, C. Chang, Y. Hsu, and S. Yang, “Key probe: A technique for animation keyframe extraction,” The Visual Computer, Vol. 21, No. 8–10, pp. 532–541, 2005.

    Article  Google Scholar 

  70. O. Arikan, “Compression of motion capture databases,” ACM Transactions on Graphics (Proc. of SIGGRAPH’06), Vol. 25, No. 3, pp. 890–897, 2006.

    Article  Google Scholar 

  71. D. Kochanek and R. Bartels, “Interpolating splines with local tension, continuity, and bias control,” ACM Computer Graphics (Proc. of SIGGRAPH’84), Vol. 18, No. 3, pp. 33–41, 1984.

    Article  Google Scholar 

  72. J. Steketee and N. Badler, “Parametric keyframe interpolation incorporating kinetic adjustment and phrasing control,” ACM Computer Graphics (Proc. of SIGGRAPH’85), Vol. 19, No. 3, pp. 255–262, 1985.

    Article  Google Scholar 

  73. R. Bartels and I. Hardke, “Speed adjustment for keyframe interpolation,” in Proceedings of Graphics Interface, pp. 14–19, 1989.

    Google Scholar 

  74. N. Badler, C. B. Phillips, and B. L. Webber, Simulating Humans: Computer Graphics, Animation, and Control. Oxford University Press, 1999.

    Google Scholar 

  75. L. Bezault, R. Boulic, N. Magnenat-Thalmann, and D. Thalmann, “An interactive tool for the design of human free-walking trajectories,” in Proceedings of Computer Animation, pp. 87–104, 1992.

    Google Scholar 

  76. A. Bruderlin and T. W. Calvert, “Goal-directed dynamic animation of human walking,” ACM Computer Graphics (Proc. of SIGGRAPH’89), Vol. 23, No. 3, pp. 233–242, 1989.

    Article  Google Scholar 

  77. A. Bruderlin, “Interactive animation of personalized human locomotion,” ACM Computer Graphics (Proc. of SIGGRAPH’93), Vol. 29, No. 4, pp. 17–23, 1993.

    Google Scholar 

  78. H. Ko, “Kinematic and dynamic techniques for analyzing, predicting, and animating human locomotion,” Ph.D. dissertation, Department of Computer and Information Science, University of Pennsylvania, 1994.

    Google Scholar 

  79. D. Zeltzer, “Motor control techniques for figure animation,” IEEE Computer Graphics and Applications, Vol. 2, No. 9, pp. 53–59, 1982.

    Article  Google Scholar 

  80. F. Multon, L. France, P. Cani-Gasguel, and G. Debunne, “Computer animation of human walking: A survey,” Journal of Visualization and Computer Animation, Vol. 10, pp. 39–54, 1999.

    Article  Google Scholar 

  81. R. Bartels, J. C. Beatty, and B. A. Barsky, An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Los Altos, CA: Morgan Kaufmann, 1987.

    Google Scholar 

  82. B. Guenter and R. Parent, “Computing the arclength of parametric curves,” IEEE Computer Graphics and Applications, Vol. 10, No. 3, pp. 72–78, 1990.

    Article  Google Scholar 

  83. J. Saunders, V. T. Inman, and H. D. Eberhart, “The major determinants in normal and pathological gait,” Journal of Visualization and Computer Animation, Vol. 35-A, No. 3, pp. 543–558, 1953.

    Google Scholar 

  84. P. Richer, Artistic Anatomy. Watson-Gutpill Publications, 1981.

    Google Scholar 

  85. W. Maurel, Y. Wu, N. Magnenat-Thalmann, and D. Thalmann, Biomechanical Models for Soft Tissue Simulation. Berlin/Heidelberg: Springer-Verlag, 1998.

    Google Scholar 

  86. S. Delp and J. Loan, “A computational framework for simulating and analyzing human and animal movement,” IEEE Computing in Science & Engineering, Vol. 2, No. 5, pp. 46–55, 2000.

    Google Scholar 

  87. Y. Lanir, Skin Mechanics. New York: McGraw-Hill, pp. 11–16, 1987.

    Google Scholar 

  88. MetaCreations Software, Inc., Poser 4, available at http://www.metacreat-ions.com∏ucts (Poser 7 is available at http://www.e-frontier.com/go/poser).

    Google Scholar 

  89. L. Kavan and J. Zara, “Real time skin deformation with bones blending,” in Proceedings of WSCG’2003 (Short Papers), pp. 69–74, 2003.

    Google Scholar 

  90. Autodesk, “3ds Max”, http://usa.autodesk.com.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Güdükbay, U., Özgüç, B., Memişoğlu, A., Yeşil, M.Š. (2008). Modeling, Animation, and Rendering of Human Figures. In: Ozaktas, H.M., Onural, L. (eds) Three-Dimensional Television. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72532-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72532-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72531-2

  • Online ISBN: 978-3-540-72532-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics