Advertisement

Multiple Description Coding and its Relevance to 3DTV

  • Andrey Norkin
  • M. Oguz Bici
  • Anil Aksay
  • Cagdas Bilen
  • Atanas Gotchev
  • Gozde B. Akar
  • Karen Egiazarian
  • Jaakko Astola
Chapter
  • 756 Downloads
Part of the Signals and Communication Technology book series (SCT)

Keywords

Motion Vector Forward Error Correction Packet Loss Rate Rate Distortion Multiple Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Ahlswede, On multiple descriptions and team guessing,IEEE Trans. Inform. Theory IT-32, 807–814, 1983.Google Scholar
  2. 2.
    R. Ahlswede, The rate distortion theory for multiple descriptions without excess rate, IEEE Trans. Inform. Theory 31, no. 6, 502–521, 1985.CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Aksay, C. Bilen, E. Kurutepe, T. Ozcelebi, G. Bozdagi Akar, R. Civanlar, and M. Tekalp, Temporal and spatial scaling for stereoscopic video compression, in Proc. EUSIPCO’06 (Florence, Italy) 8, Sept. 2006.Google Scholar
  4. 4.
    E. Akyol, A. M. Tekalp, and M. R. Civanlar, Scalable multiple description video coding with flexible number of descriptions, in Proc. IEEE Int. Conf. Image Processing 3, 712–715, Sept. 2005.Google Scholar
  5. 5.
    A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, Priority encoding transmission, IEEE Trans. Information Theory 42, 1737–1744, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    G. AlRegib, Y. Altunbasak, and J. Rossignac, An unequal error protection method for progressively transmitted 3-D models, IEEE Trans. Multimedia 7, 766–776, 2005.CrossRefGoogle Scholar
  7. 7.
    J. Apostolopoulos, Error-resilient video compression through the use of multiple states, in Proc. Int. Conf. Image Processing 3, 352–355, Sept. 2000.Google Scholar
  8. 8.
    J. Apostolopoulos and S. Wee, Unbalanced multiple description video communication using path diversity, in Proc. Int. Conf. Image Processing 1, 966–969, Oct. 2001.Google Scholar
  9. 9.
    I. Bajic and J. Woods, Domain-based multiple description coding of images and video, IEEE Trans. Image Process. 12, 1211–1225, 2003.Google Scholar
  10. 10.
    T. Berger, Rate distortion theory, Prentice Hall, Englewood Cliffs: NJ, 1971.Google Scholar
  11. 11.
    T. Berger and Z. Zhang, Minimum breakdown degradation in binary source encoding, IEEE Trans. Inform. Theory IT-29, 807–814, 1983.CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. O. Bici and G. Bozdagi Akar, Multiple description scalar quantization based 3D mesh coding, in Proc. IEEE Int. Conf. Image Processing (Atlanta, US) Oct. 2006.Google Scholar
  13. 13.
    A. Bogomjakov and C. Gotsman, Universal rendering sequences for transparent vertex caching of progressive meshes, Computer Graphics Forum 21, 137–148, 2002.CrossRefGoogle Scholar
  14. 14.
    N. Boulgouris, K. Zachariadis, A. Leontaris, and M. Strintzis, Drift-free multiple description coding of video, in Proc. IEEE Int. Workshop Multimedia Signal Processing 1, 105–110, 2001.Google Scholar
  15. 15.
    N. V. Boulgouris and M. G. Strintzis, A family of wavelet-based stereo image coders, IEEE Trans. Cirquits Syst. Video Technol. 12, no. 10, 898–903, 2002.CrossRefGoogle Scholar
  16. 16.
    C.-S.Kim, R.-C.Kim, and S.-U. Lee, Matching pursuits multiple description coding for wireless video, IEEE Trans. Circuits Syst. Video Technol. 11, 1011–1021, 2001.CrossRefGoogle Scholar
  17. 17.
    Y. Charfi, R. Hamzaoui, and D. Saupe, Model-based real-time progressive transmission of images over noisy channel, in Proc. WCNC’03 (New Orleans, LA) 347–354, Mar. 2003.Google Scholar
  18. 18.
    D.-M. Chung and Y. Wang, Multiple description image coding based on lapped orthogonal transforms, in Proc. IEEE Int. Conf. Image Processing (ICIP’98) 1, 664–668, Oct 1998.Google Scholar
  19. 19.
    D.-M. Chung and Y. Wang, Multiple description image coding using signal decomposition and reconstruction based on lapped orthogonal transforms, IEEE Trans. Circuits Syst. Video Technol. 9, 895–908, 1999.Google Scholar
  20. 20.
    D.-M. Chung and Y. Wang, Lapped orthogonal transforms designed for error-resilient image coding, IEEE Trans. Circuits Syst. Video Technol. 12, 752–764, 2002.Google Scholar
  21. 21.
    P. Cignoni, C. Rocchini, and R. Scopigno, Metro: Measuring error on simplified surfaces, Computer Graphics Forum 17, 167–174, 1998.CrossRefGoogle Scholar
  22. 22.
    D. Comas, R. Singh, and A. Ortega, Rate-distortion optimization in a robust video transmission based on unbalanced multiple description coding, in Proc. IEEE Int. Workshop Multimedia Signal Processing (Cannes, France) 581–586, Oct. 2001.Google Scholar
  23. 23.
    D. Comas, R. Singh, A. Ortega, and F. Marques, Unbalanced multiple-description video coding with rate-distortion optimization, EURASIP J. Appl. Signal Processing no. 1, 81–90, 2003.Google Scholar
  24. 24.
    S. Diggavi, N. Sloane, and V. Vaishampayan, Asymmetric multiple description lattice vector quantizers, IEEE Trans. Inform. Theory 48, no. 1, 174–191, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    I. Dinstein, M. G. Kim, A. Henik, and J. Tzelgov, Compression of stereo images using subsampling transform coding, Optical Engineering 30, no. 9, 1359–1364, 1991.CrossRefGoogle Scholar
  26. 26.
    A. A. El-Gamal and T. M. Cover, Achievable rates for multiple descriptions, IEEE Trans. Inform. Theory 28, 851–857, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    W. Equitz and T. Cover, Successive refinement of information, IEEE Trans. Inform. Theory 37, no. 2, 269–275, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M. Fleming and M. Effros, Generalized multiple description vector quantization, in Proc. Data Compression Conference 3–12, Mar. 1999.Google Scholar
  29. 29.
    N. Franchi, M. Fumagalli, R. Lancini, and S. Tubaro, A space domain approach for multiple description video coding, in Proc. IEEE Int. Conf. Image Processing 3, 253–256, Sept. 2003.Google Scholar
  30. 30.
    N. Franci, M. Fumagalli, and R. Lancini, Flexible redundancy insertion in a polyphase down sampling multiple description image coding, in Proc. IEEE Int. Conf. Multimedia Expo 2, 605–608, Aug. 2002.CrossRefGoogle Scholar
  31. 31.
    M. Fumagalli, D. Sagetong, and A. Ortega, Estimation of erased data in a H.263 coded stream by using unbalanced multiple description coding, in Proc. Int. Conf. Multimedia Expo 2, 13–16, July 2003.Google Scholar
  32. 32.
    V. Goyal, Multiple description coding: Compression meets the network, IEEE Signal Processing Mag. 18, 74–93, 2001.CrossRefGoogle Scholar
  33. 33.
    V. Goyal, J. Kelner, and J. Kovacevic, Multiple description vector quantization with a coarse lattice, IEEE Trans. Inform. Theory 48, no. 3, 781–788, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    V. Goyal and J. Kovacevic, Optimal multiple description transform coding of gaussian vectors, in Proc. IEEE Data Compression Conf. 388–397, Mar. 1998.Google Scholar
  35. 35.
    V. Goyal and J. Kovacevic, Generalized multiple description coding with correlating transforms, IEEE Trans. Inform. Theory 47, no. 6, 2199–2224, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    V. Goyal, J. Kovacevic, R. Arean, and M. Vetterli, Multiple description transform coding of images, in Proc. Int. Conf. Image Processing 1, 674–678, Oct. 1998.Google Scholar
  37. 37.
    V. Goyal, J. Kovacevic, and M. Vetterli, Multiple description transform coding: Robustness to erasures using tight frame expansions, in Proc. IEEE Int. Symp. Inform. Theory (Cambridge, MA) 408, Aug. 1998.Google Scholar
  38. 38.
    V. Goyal, J. Kovacevic, and M. Vetterli, Quantized frame expansions as source-channel codes for erasure channels, in Proc. IEEE Int. Conf. Data Compression, 326–335, Mar. 1998.Google Scholar
  39. 39.
    V. Goyal, M. Vetterli, and N. Thao, Quantized overcomplete expansions in Rn: Analysis, synthesis, and algorithms, IEEE Trans. Inform. Theory 44, no. 1, 16–31, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    ISO/IEC, Information technology – open systems interconnection – basic reference model: The basic model, ISO/IEC 7498-1: 1994(E), Nov. 1994.Google Scholar
  41. 41.
    ITU-T, Video coding for low bit rate communication, ITU-T Rec. H.263; version 1, Nov. 1995; version 2, Jan. 1998; version 3, Nov. 2000.Google Scholar
  42. 42.
    ITU-T and ISO/IEC JTC 1, Advanced video coding for generic audiovisual services, ITU-T Rec. H.264; ISO/IEC 14496-10 AVC, 2003.Google Scholar
  43. 43.
    A. Mohr, E. Riskin, A. Lippman, J. Goshi, and R. Ladner, Unequal loss protection for H.263 compressed video, in Proc. IEEE Data Compression Conf. 73–82, Mar. 2003.Google Scholar
  44. 44.
    H. Jafarkhani and V. Tarokh, Multiple description trellis coded quantization, in Proc. IEEE Int. Conf. Image Processing (ICIP98) 1, 669–673, Oct. 1998.Google Scholar
  45. 45.
    P. Jaromersky, X. Wu, Y. Chiang, and N. Memon, Multiple-description geometry compression for networked interactive 3D graphics, in Proc. ICIG’2004, 468–471, Dec. 2004.Google Scholar
  46. 46.
    W. Jiang and A. Ortega, Multiple description coding via scaling-rotation transform, in Proc. Int. Conf. Acoustics Speech Signal Processing 5, 2419–2422, Mar. 1999.Google Scholar
  47. 47.
    B. Julesz, Foundations of cyclopeon perception The University of Chicago Press, 1971.Google Scholar
  48. 48.
    M. Karczewicz and R. Kurceren, The SP- and SI-frames design for H.264/AVC, IEEE Trans. Circuits Syst. Video Technol. 13, 637–644, 2003.CrossRefGoogle Scholar
  49. 49.
    Z. Karni, A. Bogomjakov, and C. Gotsman, Efficient compression and rendering of multi-resolution meshes, in Proc. IEEE Int. Conf. Visualization (Boston, US) Oct. 2002.Google Scholar
  50. 50.
    J. Kelner, V. Goyal, and J. Kovacevic, Multiple description lattice vector quantization: Variations and extension, in Proc. IEEE Data Compression Conf. (Snowbird, UT) 480–489, Mar. 2000.Google Scholar
  51. 51.
    A. Khodakovsky, P. Schröder, and W. Sweldens, Progressive geometry compression, in Proc. Comput. Graph. SIGGRAPH 2000, 271–278, 2000.Google Scholar
  52. 52.
    C.-S. Kim and S.-U. Lee, Multiple description motion coding algorithm for robust video transmission, in Proc. ISCAS 2000 4, 717–720, May 2000.Google Scholar
  53. 53.
    C.-S. Kim and S.-U. Lee, Multiple description coding of motion fields for robust video transmission, IEEE Trans. Circuits Syst. Video Technol. 11, no. 9, 999–1010, 2001.Google Scholar
  54. 54.
    T. Linder, R. Zamir, and K. Zeger, The multiple description rate region for high resolution source coding, in Proc. IEEE Data Compression Conf. 49–158, Mar. 1998.Google Scholar
  55. 55.
    A. Miguel, A. Mohr, and E. Riskin, SPIHT for generalized multiple description coding, in Proc. IEEE Int. Conf. Image Processing 3, 842–846, Oct. 1999.Google Scholar
  56. 56.
    A. Mohr, E. Riskin, and R. Ladner, Generalized multiple description coding through unequal loss protection, in Proc. IEEE Int. Conf. Image Processing 1, 411–415, 1999.Google Scholar
  57. 57.
    A. Munos, T. Blu, and M. Unser, Least squares image resizing using finite differences, IEEE Trans. Image Processing 10, 1365–1378, 2001.CrossRefGoogle Scholar
  58. 58.
    A. Norkin, A. Aksay, C. Bilen, G. Bozdagi Akar, A. Gotchev, and J. Astola, Schemes for multiple description coding of stereoscopic video, LNCS, in Proc. MRCS 2006 (Springer-Verlag Heidelberg) 4105, 730–737, Sept. 2006.Google Scholar
  59. 59.
    A. Norkin, M. O. Bici, G. Bozdagi Akar, A. Gotchev, and J. Astola, Wavelet-based multiple description coding of 3-D geometry, in Proc. VCIP’07, Proc. SPIE (San-Jose, US) 6508, 65082I–1–65082I–10, Jan. 2007.Google Scholar
  60. 60.
    A. Norkin, A. Gotchev, K. Egiazarian, and J. Astola, Low-complexity multiple description coding of video based on 3D block transforms, EURASIP J. on Embedded Systems 2007, Article ID 38631, 11 pages, 2007. doi:10.1155/2007/38631.Google Scholar
  61. 61.
    A. Norkin, A. Gotchev, K. Egiazarian, and J. Astola, Two-stage multiple description image coders: Analysis and comparative study, Signal Processing: Image Communication 21/8, 609–625, 2006.Google Scholar
  62. 62.
    M. Orchard and G. Sullivan, Overlapped block motion compensation: an estimation-theoretic approach, IEEE Trans. Image Processing 3, no. 5, 693–699, 1994.CrossRefGoogle Scholar
  63. 63.
    M. Orchard, Y. Wang, V. Vaishampayan, and A. Reibman, Redundancy rate distortion analysis of multiple description image coding using pairwise correlating transforms, in Proc. Int. Conf. Image Processing (Santa Barbara, CA) 608–611, Oct. 1997.Google Scholar
  64. 64.
    L. Ozarow, On a source-channel coding problem with two channels and three receivers, Bell Syst. Tech. J. 59, no. 10, 1909–1921, 1980.zbMATHMathSciNetGoogle Scholar
  65. 65.
    S. Regunathan and K. Rose, Efficient prediction in multiple description video coding, in Proc. IEEE Int. Conf. Image Processing 1, 1020–1023, Sept. 2000.Google Scholar
  66. 66.
    A. Reibman, H. Jafarkhani, Y. Wang, and M. Orchard, Multiple description video using rate-distortion splitting, in Proc. IEEE Int. Conf. Image Processing (ICIP2001) 1, 978–981, Oct. 2001.Google Scholar
  67. 67.
    A. Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri, Multiple description coding for video using motion-compensated prediction, in Proc. IEEE Int. Conf. Image Processing (ICIP99) 3, 837–841, Oct. 1999.Google Scholar
  68. 68.
    A. Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri, Multiple description coding for video using motion-compensated temporal prediction, IEEE Trans. Circuits Syst. Video Technol. 12, 193–204, 2002.CrossRefGoogle Scholar
  69. 69.
    J. Reichel, H. Schwarz, and M. Wien, Scalable video coding – working draft 3, JVT-P201 (Poznan, PL) 24–29, July 2005.Google Scholar
  70. 70.
    B. Rimoldi, Successive refinement of information, IEEE Trans. Inform. Theory 40, no. 1, 253–259, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    E. Riskin, Optimum bit allocation via generalized BFOS algorithm, IEEE Trans. Inform. Theory 37, 400–4002, 1991.CrossRefGoogle Scholar
  72. 72.
    P. Sagetong and A. Ortega, Optimal bit allocation for channel-adaptive multiple description coding, in Proc. Video Commun. Image Processing (San Jose, CA) 53–63, Jan. 2000.Google Scholar
  73. 73.
    A. Said and W. Pearlman, A new, fast, and efficient image codec based on set partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video Technol. 6, no. 3, 243–250, 1996.CrossRefGoogle Scholar
  74. 74.
    A. Secker and D. Taubman, Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting, in Proc. IEEE Int. Conf. Image Processing 2, 1029–1032, 2001.Google Scholar
  75. 75.
    S. A. Segall, Study upsampling/downsampling for spatial scalability, JVT-Q083 (Nice, FR, PL) 14–21 Oct. 2005.Google Scholar
  76. 76.
    S. Servetto, V. Vaishampayan, and N. Sloane, Multiple description lattice vector quantization, in Proc. IEEE Data Compression Conf. (Snowbird, UT) 13–22, Mar. 1999.Google Scholar
  77. 77.
    S. D. Servetto, K. Ramchadran, V. Vaishampayan, and K. Nahrstedt, Multiple-description wavelet based image coding, in Proc. IEEE Int. Conf. Image Processing (Chicago, IL) 1998.Google Scholar
  78. 78.
    C.-S. Kim and S.-U. Lee, Multiple-description wavelet based image coding, IEEE Trans. Image Processing 9, no. 5, 813–826, 2000.Google Scholar
  79. 79.
    R. Singh and A. Ortega, Erasure recovery in predictive coding environments using multiple description coding, in Proc. IEEE 3D Workshop Multimedia Signal Processing 333–338, Sept. 1999.Google Scholar
  80. 80.
    X. Tang and A. Zakhor, Matching pursuits multiple description coding for wireless video, IEEE Trans. Circuits Syst. Video Technol. 12, 566–575, 2002.Google Scholar
  81. 81.
    G. Taubin and J. Rossignac, Geometric compression through topological surgery, ACM Trans. Graphics 17, no. 2, 84–115, 1998.Google Scholar
  82. 82.
    T. Tillo and G. Olmo, A novel multiple description coding scheme compatible with the JPEG2000 decoder, IEEE Signal Processing Lett. 11, 908–911, 2004.CrossRefGoogle Scholar
  83. 83.
    C. Touma and C. Gotsman, Triangle mesh compression, in Proc. Graphics Interface (Vancouver, BC, Canada) Jun. 1998.Google Scholar
  84. 84.
    V. Vaishampayan, Design of multiple description scalar quantizers, IEEE Trans. Inform. Theory 39, no. 3, 821–834, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    C.-S. Kim and S.-U. Lee, Application of multiple description codes to image and video transmission over lossy networks, in Proc. 7th Int. Workshop Packet Video (Brisbane, Australia) 55–60, Mar. 1996.Google Scholar
  86. 86.
    V. Vaishampayan and J.-C. Batllo, Asymptotic analysis of multiple description quantizers, IEEE Trans. Inform. Theory 44, no. 1, 278–284, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    V. Vaishampayan and J. Domaszewicz, Design of entropy-constrained multiple description scalar quantizers, IEEE Trans. Inform. Theory 40, no. 1, 245–250, 1994.zbMATHCrossRefGoogle Scholar
  88. 88.
    V. Vaishampayan, N. Sloane, and S. Servetto, Multiple description vector quantization with lattice codebooks: design and analysis, IEEE Trans. Inform. Theory 47, no. 5, 1718–1734, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    M. van der Schaar and D. Turaga, Multiple description scalable coding using wavelet-based motion compensated temporal filtering, in Proc. IEEE Int. Conf. Image Processing 2, 489–492, Sept. 2003.Google Scholar
  90. 90.
    R. Venkataramani, G. Kramer, and V. Goyal, Multiple description coding with many channels, IEEE Trans. Inform. Theory 49, no. 9, 2106–2114, 2003.Google Scholar
  91. 91.
    Y. Wang and S. Lin, Error-resilient coding using multiple description motion compensation, in Proc. IEEE Int. Workshop Multimedia Signal Processing (MMSP01) 441–446, Oct. 2001.Google Scholar
  92. 92.
    C.-S. Kim and S.-U. Lee, Error-resilient coding using multiple description motion compensation, IEEE Trans. Circuits Syst. Video Technol. 12, no. 6, 438–452, 2002.Google Scholar
  93. 93.
    Y. Wang, M. Orchard, and A. Reibman, Multiple description image coding for noisy channels by pairing transform coefficients, in Proc. IEEE First Workshop Multimedia Signal Processing (San Diego, CA) 419–424, June 1997.Google Scholar
  94. 94.
    C.-S. Kim and S.-U. Lee, Optimal pairwise correlating transform for multiple description coding, in Proc. Int. Conf. Image Processing 1, 679–683, Oct. 1998.Google Scholar
  95. 95.
    Y. Wang, M. Orchard, V. Vaishampayan, and A. Reibman, Multiple description coding using pairwise correlating transforms, IEEE Trans. Image Processing 10, no. 3, 351–366, 2001zbMATHCrossRefGoogle Scholar
  96. 96.
    Y. Wang, A. Reibman, and S. Lin, Multiple description coding for video delivery, in Proc. of IEEE 93, 57–70, 2005.CrossRefGoogle Scholar
  97. 97.
    Y. Wang, A. Reibman, M. Orchard, and H. Jafarkhani, An improvement to multiple description transform coding, IEEE Trans. Image Processing 50, no. 11, 2843–2854, 2002.CrossRefGoogle Scholar
  98. 98.
    Y. Wang and C. Wu, A mesh-based multiple description coding method for network video, in Proc. 18th Int. Conf. Advanced Information Networking and Application (AINA) 1, 549–554, Sept. 2004.CrossRefGoogle Scholar
  99. 99.
    S. Wenger, G. Knorr, J. Ott, and F. Kossentini, Error resilience support in H.263+, IEEE Trans. Circuits Syst. Video Technol. 8, no. 7, 867–877, 1998.CrossRefGoogle Scholar
  100. 100.
    H. S. Witsenhausen, On source networks with minimal breakdown degradation, Bell Syst. Tech. J. 59, no. 6, 1083–1087, 1980.zbMATHGoogle Scholar
  101. 101.
    H. S. Witsenhausen and A. D. Wyner, Source coding for multiple descriptions. II: A binary source, Bell Syst. Tech. J. 60, no. 10, 2281–2292, 1980.MathSciNetGoogle Scholar
  102. 102.
    J. Wolf, A. Wyner, and J. Ziv, Source coding for multiple descriptions, Bell Syst. Tech. J. 59, no. 8, 1417–1426, 1980.zbMATHMathSciNetGoogle Scholar
  103. 103.
    W. Woo and A. Ortega, Optimal blockwise dependent quantization for stereo image coding, IEEE Trans. on Cirquits Syst. Video Technol. 9, 861–867, 1999.CrossRefGoogle Scholar
  104. 104.
    Z. Yan, S. Kumar, and C.-C. J. Kuo, Error resilient coding of 3-D graphic models via adaptive mesh segmentation, IEEE Trans. Circuits Syst. Video Technol. 11, 860–873, 2001.CrossRefGoogle Scholar
  105. 105.
    R. Zamir, Gaussian codes and shannon bounds for multiple descriptions, IEEE Trans. Inform. Theory 45, no. 7, 2629–2636, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  106. 106.
    Z. Zhang and T. Berger, New results in binary multiple descriptions, IEEE Trans. Inform. Theory 33, 502–521, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  107. 107.
    A. Smolic, R. Sondershaus, N. Stefaroski, L. Vàša, K. Müller, J. Ostermann, and T. Wiegand, A surrey to coding of static and dynamic 3D meshes, in Three Dimensional Television: Capture, Transmission, and Display, eds. H. M. Ozaktas and L. Onural, Springer, 2007(this book).Google Scholar
  108. 108.
    A. Smolic, P. Merkle, K. Müller, C. Fehn, P. Kauff, and T. Wiegand, Compression of Multi-View Video and Associated Data, in Three Dimensional Television: Capture, Transmission, and Display, eds. H. M. Ozaktas and L. Onural, Springer, 2007(this book).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrey Norkin
    • 1
  • M. Oguz Bici
    • 2
  • Anil Aksay
    • 2
  • Cagdas Bilen
    • 2
  • Atanas Gotchev
    • 1
  • Gozde B. Akar
    • 2
  • Karen Egiazarian
    • 1
  • Jaakko Astola
    • 1
  1. 1.Institute of Signal ProcessingTampere University of TechnologyTampereFinland
  2. 2.Middle East Technical UniversityTurkey

Personalised recommendations