Advertisement

LINP: Supporting Similarity Search in Unstructured Peer-to-Peer Networks

  • Bin Cui
  • Weining Qian
  • Linhao Xu
  • Aoying Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4505)

Abstract

An important problem that confronts peer-to-peer (p2p) systems is efficient support for content-based search. In this paper, we look at how similarity query in high-dimensional spaces can be supported in unstructured P2P systems. We design an efficient index mechanism, named Linking Identical Neighborly Partitions (LINP), which takes advantage of both space partitioning and routing indices techniques. We evaluate our proposed scheme over various data sets, and experimental results show the efficacy of our approach.

Keywords

Query Processing Query Time Similarity Query Identical Partition Neighbor Peer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corel Image Features, available from http://kdd.ics.uci.edu
  2. 2.
    Castro, M., Costa, M., Rowstron, A.: Should we build gnutella on a structured overlay? In: Proc. of HotNets-II (2003)Google Scholar
  3. 3.
    Chakrabarti, K., Mehrotra, S.: Local dimensionality reduction: A new approach to indexing high dimensional spaces. In: Proc. of VLDB, pp. 89–100 (2000)Google Scholar
  4. 4.
    Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making gnutella-like p2p systems scalable. In: Proc. of SIGCOMM, pp. 407–418 (2003)Google Scholar
  5. 5.
    Crainiceanu, A., Linga, P., Gehrke, J., Shanmugasundaram, J.: P-tree: A p2p index for resource discovery applications. In: Proc. of WWW, pp. 390–391 (2004)Google Scholar
  6. 6.
    Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: Proc. of ICDCS, pp. 23–34 (2002)Google Scholar
  7. 7.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: A balanced tree structure for peer-to-peer networks. In: Proc. of VLDB (2005)Google Scholar
  8. 8.
    Loo, B.T., Hellerstein, J.M., Huebsch, R., Shenker, S., Stoica, I.: Enhancing p2p file-sharing with an internet-scale query processor. In: Proc. of VLDB (2004)Google Scholar
  9. 9.
    Palmer, C.R., Steffan, J.G.: Generating network topologies that obey power law. In: Proc. of IEEE GLOBECOM (2000)Google Scholar
  10. 10.
    Reynolds, P., Vahdat, A.: Efficient peer-to-peer keyword searching. In: Proc. of ACM Middleware (2003)Google Scholar
  11. 11.
    Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proc. of SIGCOMM (2001)Google Scholar
  13. 13.
    Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high dimensional spaces. In: Proc. of VLDB (1998)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Bin Cui
    • 1
  • Weining Qian
    • 2
    • 4
  • Linhao Xu
    • 3
  • Aoying Zhou
    • 2
    • 4
  1. 1.Peking UniversityChina
  2. 2.East China Normal UniversityChina
  3. 3.National University of Singapore 
  4. 4.Fudan UniversityChina

Personalised recommendations