Advertisement

The Hardness of Selective Network Design for Bottleneck Routing Games

  • Haiyang Hou
  • Guochuan Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4484)

Abstract

In this paper, motivated by the work of Azar et al. [3] we consider selective network design on bottleneck routing games. Assuming P NP we achieve the following results. For the unsplittable bottleneck games the trivial algorithm is a best possible approximation algorithm. For the k-splittable unweighted bottleneck games it is NP-hard to compute a best pure-strategy Nash equilibrium. Moreover no polynomial time algorithms can have a constant approximation ratio if the edge latency functions are continuous and non-decreasing.

Keywords

Performance Function Network Design Problem Congestion Game Bandwidth Request Network Bottleneck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anshelevich, E., et al.: The price of stability for network design with fair cost allocation. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 59–73 (2004)Google Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 331–337 (2005)Google Scholar
  3. 3.
    Azar, Y., Epstein, A.: The Hardness of Network Design for Unsplittable Flow with Selfish Users. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 41–54. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Baier, G., Köhler, E., Skutella, M.: On the k-splittable flow problem. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 101–113. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Banner, R., Orda, A.: Bottleneck Routing Games in Communication Networks. In: Proceedings of the 25th Conference on Computer Communications (IEEE INFOCOM) (2006)Google Scholar
  6. 6.
    Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–73 (2005)Google Scholar
  8. 8.
    Fortune, S., Hopcroft, J.E., Wyllie, J.C.: The directed subgraph homeomorphism problem. Theoretical Computer Science 10(2), 111–121 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Papadimitriou, C.H., Koutsoupias, E.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Meyers, C.: Ph.D thesis, MIT (2006)Google Scholar
  12. 12.
    Murchland, J.D.: Braess’paradox of traffic flow. Transportation Research 4, 391–394 (1970)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.H.: Algorithms, games, and the Internet. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 749–753 (2001)Google Scholar
  14. 14.
    Roughgarden, T.: Designing networks for selfish users is hard. In: Proceedings of the 42th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 472–481 (2001)Google Scholar
  15. 15.
    Roughgarden, T.: The price of anarchy is independent of the network topology. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 428–437 (2002)Google Scholar
  16. 16.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Haiyang Hou
    • 1
  • Guochuan Zhang
    • 1
  1. 1.Department of Mathematics, Zhejiang University, Hangzhou 310027China

Personalised recommendations