Advertisement

A Time Hierarchy Theorem for Nondeterministic Cellular Automata

  • Chuzo Iwamoto
  • Harumasa Yoneda
  • Kenichi Morita
  • Katsunobu Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4484)

Abstract

We present a tight time-hierarchy theorem for nondeterministic cellular automata by using a recursive padding argument. It is shown that, if t 2(n) is a time-constructible function and t 2(n) grows faster than t 1(n + 1), then there exists a language which can be accepted by a t 2(n)-time nondeterministic cellular automaton but not by any t 1(n)-time nondeterministic cellular automaton.

Keywords

Cellular Automaton Cellular Automaton Input String Encode Sequence Random Access Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cook, S.A.: A hierarchy for nondeterministic time complexity. J. Comput. System Sci. 7, 343–353 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J. Comput. System Sci. 7, 354–375 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fürer, M.: The tight deterministic time hierarchy. In: Proc. ACM Symp. on Theory of Computing, pp. 8–16 (1982)Google Scholar
  4. 4.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hennie, F.C.: One-tape off-line Turing machine computations. Inform. Contr. 8, 553–578 (1965)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ibarra, O.H.: A note concerning nondeterministic tape complexity. J. Assoc. Comput. Mach. 19, 608–612 (1972)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Iwama, K., Iwamoto, C.: Parallel complexity hierarchies based on PRAMs and DLOGTIME-uniform circuits. In: Proc. 11th IEEE Conf. on Computational Complexity, pp. 24–32 (1996)Google Scholar
  8. 8.
    Iwama, K., Iwamoto, C.: Improved time and space hierarchies of one-tape off-line TMs. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 580–588. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Iwamoto, C., et al.: Computational complexity in the hyperbolic plane. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 365–374. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Iwamoto, C., et al.: Hierarchies of DLOGTIME-uniform circuits. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 211–222. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Iwamoto, C., et al.: Constructible functions in cellular automata and their applications to hierarchy results. Theoret. Comput. Sci. 270, 797–809 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Iwamoto, C., Margenstern, M.: Time and space complexity classes of hyperbolic cellular automata. IEICE Trans. on Information and Systems E87-D(3), 700–707 (2004)Google Scholar
  13. 13.
    Iwamoto, C., et al.: Translational lemmas for alternating TMs and PRAMs. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 126–137. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Loryś, K.: New time hierarchy results for deterministic TMs. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 329–336. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Mazoyer, J.: A 6-state minimal time solution to the firing squad synchronization problem. Theoret. Comput. Sci. 50, 183–238 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Paul, W.J.: On time hierarchies. J. Comput. System Sci. 19, 197–202 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Paul, W.J., Prauß, E.J., Reischuk, R.: On alternation. Acta Inform. 14, 243–255 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rogers Jr., H.: Theory of recursive functions and effective computability. McGraw-Hill, New York (1967)zbMATHGoogle Scholar
  19. 19.
    Seiferas, J.I.: Nondeterministic time and space complexity classes. MIT-LCS-TR-137, Proj. MAC, MIT, Cambridge, Mass. (Sept. 1974)Google Scholar
  20. 20.
    Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Separating nondeterministic time complexity classes. J. Assoc. Comput. Mach. 25(1), 146–167 (1978)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Sipser, M.: Introduction to the theory of computation. PWS Publishing, Boston (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Chuzo Iwamoto
    • 1
  • Harumasa Yoneda
    • 1
  • Kenichi Morita
    • 1
  • Katsunobu Imai
    • 1
  1. 1.Hiroshima University, Graduate School of Engineering, Higashi-Hiroshima, 739-8527Japan

Personalised recommendations