Secure Multiparty Computations Using a Dial Lock

(Extended Abstract)
  • Takaaki Mizuki
  • Yoshinori Kugimoto
  • Hideaki Sone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4484)


This paper first explores the power of the dial locks (also called the combination locks), which are physical handy devices, in designing cryptographic protocols. Specifically, we design protocols for secure multiparty computations using the dial locks, and give some conditions for a Boolean function to be or not to be securely computable by a dial lock, i.e., to be or not to be “dial-computable.” In particular, we exhibit simple necessary and sufficient conditions for a symmetric function to be dial-computable.


Boolean Function Binary Vector Symmetric Function Secure Computation Cryptographic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, M.H., et al.: Safe communication for card players by combinatorial designs for two-step protocols. Australasian Journal of Combinatorics 33, 33–46 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Balogh, J., et al.: Private computation using a PEZ dispenser. Theoretical Computer Science 306, 69–84 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    den Boer, B.: More efficient match-making and satisfiability: the five card trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Clote, P., Kranakis, E.: Boolean Functions and Computation Models. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  5. 5.
    Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Communications of the ACM 39(5), 77–85 (1996)CrossRefGoogle Scholar
  7. 7.
    Fischer, M.J., Wright, R.N.: Bounds on secret key exchange using a random deal of cards. Journal of Cryptology 9, 71–99 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  9. 9.
    Mizuki, T., Otagiri, T., Sone, H.: Secure computations in a minimal model using multiple-valued ESOP expressions. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 547–554. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Mizuki, T., Shizuya, H., Nishizeki, T.: Characterization of optimal key set protocols. Discrete Applied Mathematics 131(1), 213–236 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 285–297. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Moran, T., Naor, M.: Polling with physical envelopes: a rigorous analysis of a human-centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 88–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theoretical Computer Science 191, 173–183 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Salomaa, A.: Caesar and DNA. Views on cryptology. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 39–53. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Salomaa, A.: Public-Key Cryptography, 2nd Enlarged edn. Springer, New York (1996)zbMATHGoogle Scholar
  16. 16.
    Sasao, T.: Switching Theory for Logic Synthesis. Kluwer Academic Publishers, Boston (1999)zbMATHGoogle Scholar
  17. 17.
    Stiglic, A.: Computations with a deck of cards. Theoretical Computer Science 259, 671–678 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Vollmer, H.: Introduction to Circuit Complexity. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Takaaki Mizuki
    • 1
  • Yoshinori Kugimoto
    • 2
  • Hideaki Sone
    • 1
  1. 1.Information Synergy Center, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578Japan
  2. 2.Sone Lab., Graduate School of Information Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai 980-8578Japan

Personalised recommendations