Online Deadline Scheduling with Bounded Energy Efficiency

  • Joseph Wun-Tat Chan
  • Tak-Wah Lam
  • Kin-Sum Mak
  • Prudence W. H. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4484)


Existing work on scheduling with energy concern has focused on minimizing the energy for completing all jobs or achieving maximum throughput [19,2,7,13,14]. That is, energy usage is a secondary concern when compared to throughput and the schedules targeted may be very poor in energy efficiency. In this paper, we attempt to put energy efficiency as the primary concern and study how to maximize throughput subject to a user-defined threshold of energy efficiency. We first show that all deterministic online algorithms have a competitive ratio at least Δ, where Δ is the max-min ratio of job size. Nevertheless, allowing the online algorithm to have a slightly poorer energy efficiency leads to constant (i.e., independent of Δ) competitive online algorithm. On the other hand, using randomization, we can reduce the competitive ratio to O(logΔ) without relaxing the efficiency threshold. Finally we consider a special case where no jobs are “demanding” and give a deterministic online algorithm with constant competitive ratio for this case.


Optimal Schedule Competitive Ratio Online Algorithm Energy Usage Speed Scaling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S., Fujiwara, H.: Energy-Efficient Algorithms for Flow Time Minimization. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 621–633. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bansal, N., Kimbrel, T., Pruhs, K.: Dynamic speed scaling to manage energy and temperature. In: Proc. FOCS, pp. 520–529 (2004)Google Scholar
  3. 3.
    Bansal, N., Pruhs, K.: Speed scaling to manage temperature. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 460–471. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc. SODA, pp. 805–813 (2007)Google Scholar
  5. 5.
    Brooks, D.M., et al.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)CrossRefGoogle Scholar
  6. 6.
    Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proc. SPAA, pp. 190–196 (2006)Google Scholar
  7. 7.
    Chan, H.-L., et al.: Energy efficient online deadline scheduling. In: Proc. SODA, pp. 795–804 (2007)Google Scholar
  8. 8.
    Goldman, S.A., Parwatikar, J., Suri, S.: Online scheduling with hard deadlines. J. Algorithms 34(2), 370–389 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Grunwald, D., et al.: Policies for dynamic clock scheduling. In: OSDI, pp. 73–86 (2000)Google Scholar
  10. 10.
    Irani, S., Gupta, R.K., Shukla, S.: Algorithms for power savings. In: Proc. SODA, pp. 37–46 (2003)Google Scholar
  11. 11.
    Irani, S., Pruhs, K.: Algorithmic problems in power managment. SIGACT News 32(2), 63–76 (2005)CrossRefGoogle Scholar
  12. 12.
    Kwon, W.-C., Kim, T.: Optimal voltage allocation techniques for dynamically variable voltage processors. ACM Transactions on Embedded Computing Systems 4(1), 211–230 (2005)CrossRefGoogle Scholar
  13. 13.
    Yao, F.F., Li, M., Liu, B.J.: Min-Energy Voltage Allocation for Tree-Structured Tasks. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 283–296. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. Comput. 35(3), 658–671 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Pillai, P., Shin, K.G.: Real-time dynamic voltage scaling for low-power embedded operating systems. In: SOSP, pp. 89–102 (2001)Google Scholar
  16. 16.
    Pruhs, K., Uthaisombut, P., Woeginger, G.: Getting the best resonse for your erg. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 15–25. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Pruhs, K.R., van Stee, R., Uthaisombut, P.: Speed Scaling of Tasks with Precedence Constraints. In: Erlebach, T., Persinao, G. (eds.) WAOA 2005. LNCS, vol. 3879, pp. 307–319. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Weiser, M., et al.: Scheduling for reduced CPU energy. In: OSDI, pp. 13–23 (1994)Google Scholar
  19. 19.
    Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. FOCS, pp. 374–382 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Joseph Wun-Tat Chan
    • 1
  • Tak-Wah Lam
    • 2
  • Kin-Sum Mak
    • 2
  • Prudence W. H. Wong
    • 3
  1. 1.Department of Computer Science, King’s College LondonUK
  2. 2.Department of Computer Science, The University of Hong KongHong Kong
  3. 3.Department of Computer Science, University of LiverpoolUK

Personalised recommendations