Advertisement

Abstract

A word w is called synchronizing (recurrent, reset, directable) word of deterministic finite automaton (DFA) if w brings all states of the automaton to an unique state. Černy conjectured in 1964 that every n-state synchronizable automaton possesses a synchronizing word of length at most (n − 1)2. The problem is still open.

It will be proved that the minimal length of synchronizing word is not greater than (n − 1)2/2 for every n-state (n > 2) synchronizable DFA with transition monoid having only trivial subgroups (such automata are called aperiodic). This important class of DFA accepting precisely star-free languages was involved and studied by Schŭtzenberger. So for aperiodic automata as well as for automata accepting only star-free languages, the Černý conjecture holds true.

Some properties of an arbitrary synchronizable DFA and its transition semigroup were established.

http://www.cs.biu.ac.il/~trakht/syn.html

Keywords

Deterministic finite automata synchronization aperiodic semigroup Černy conjecture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Černy, J.: Poznamka k homogenym eksperimentom s konechnymi automatami. Math.-Fyz. Čas. 14, 208–215 (1964)zbMATHGoogle Scholar
  2. 2.
    Dubuc, L.: Sur le automates circulaires et la conjecture de Černy, RAIRO Inform. Theor. Appl. 32(1-3), 21–34 (1998)MathSciNetGoogle Scholar
  3. 3.
    Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kari, J.: Synchronizing finite automata on Eulerian digraphs. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 432–438. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Kljachko, A.A., Rystsov, I.K., Spivak, M.A.: An extremely combinatorial problem connected with the bound on the length of a recurrent word in an automata. Kybernetika 2, 16–25 (1987)Google Scholar
  6. 6.
    Lallement, G.: Semigroups and Combinatorial Applications. Wiley, Hoboken (1979)zbMATHGoogle Scholar
  7. 7.
    Pin, J.E.: On two combinatorial problems arising from automata theory. Annals of Discrete Mathematics 17, 535–548 (1983)zbMATHGoogle Scholar
  8. 8.
    Rystsov, I.K.: Almost optimal bound on recurrent word length for regular automata. Cybernetics and System An. 31(5), 669–674 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Rystsov, I.K.: Reset words for commutative and solvable automata. Theoret. Comput. Sci. 172, 273–279 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Salomaa, A.: Generation of constants and synchronization of finite automata. J. of Univers. Comput. Sci. 8(2), 332–347 (2002)MathSciNetGoogle Scholar
  11. 11.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. control 8, 190–194 (1965)CrossRefzbMATHGoogle Scholar
  12. 12.
    Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. N. Trahtman
    • 1
  1. 1.Bar-Ilan University, Dep. of Math., 52900, Ramat GanIsrael

Personalised recommendations