Construct Public Key Encryption Scheme Using Ergodic Matrices over GF(2)

  • Pei Shi-Hui
  • Zhao Yong-Zhe
  • Zhao Hong-Wei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4484)


This paper proposes a new public key encryption scheme. It is based on the difficulty of deducing x and y from A and B = x·A ·y in a specific monoid (m,·) which is noncommutative. So we select and do research work on the certain monoid which is formed by all the n×n matrices over finite field F 2 under multiplication. By the cryptographic properties of an “ergodic matrix”, we propose a hard problem based on the ergodic matrices over F 2, and use it construct a public key encryption scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, New York (1997)zbMATHGoogle Scholar
  2. 2.
    Schneier, B.: Applied Cryptography: protocols, algorithms, and source code in C. John Wiley & Sons, Chichester (1996)zbMATHGoogle Scholar
  3. 3.
    Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea, New York (1974)Google Scholar
  4. 4.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, Cambridge (1994)zbMATHGoogle Scholar
  5. 5.
    Zhao, Y., Wang, L., Zhang, L.W.: Information-Exchange Using the Ergodic Matrices in GF(2). In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 388–397. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Zhao, Y., Huang, S., Jiang, Z.: Ergodic matrices over GF(2k) and their properties. Mini-Micro Systems 26(12), 35–39 (2005)Google Scholar
  7. 7.
    Sun, Y., et al.: Scheme to construct one-way(trapdoor)functions based on ergodic matrice. Journal of Jilin University 24(5), 554–560 (2006)Google Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inform. Theory 31(4), 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gerard, M., Chris, M., Joachim, R.: A public key cryptosystem based on actions by semigroups. In: IEEE International Symposium on Information Theory-Proceedings, pp. 266–289 (2002)Google Scholar
  10. 10.
    Arash, R., Anwar, H.: A new construction of Massey-Omura parallel multiplier over GF(2m). IEEE Transactions on Computers 51(5), 511–520 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pei Shi-Hui
    • 1
  • Zhao Yong-Zhe
    • 1
  • Zhao Hong-Wei
    • 1
  1. 1.College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012PRC

Personalised recommendations