Phylogenetic Aspects of Nuclear and Mitochondrial Gene-Pool Characteristics of South and North African Cape Hares (Lepus capensis) and European Hares (Lepus europaeus)

  • Franz Suchentrunk
  • Hichem Ben Slimen
  • Hakan Sert

Hares and jackrabbits (genus Lepus) are a notoriously difficult group, taxonomically, due mainly to broad phenotypic variation within taxa and wide overlap of traditional morphological characters (e.g., Angermann 1965, 1983; Flux 1983; Flux and Angermann 1990) across groups. However, several recent studies have demonstrated that forms representing superficially similar phenotypes but distinct evolutionary units can be differentiated by thorough analyses of morphological and phenetic characters and with the use of appropriate statistics (e.g., Palacios 1989 for hares from the Iberian Peninsula and Riga et al. 2001 for Lepus corsicanus, Italian hare). On the other hand, conspicuous phenotype differences or significant morphological or morphometric distinction might not always indicate differentiation at higher evolutionary level. For instance, the many domestic rabbit (Oryctolagus cuniculus f. dom.) breeds with all their different sizes and phenotypes have been created only very recently in evolutionary terms by anthropogenic selection and are still capable to be interbred. Similarly, in the genus Lepus it is conceivable that more or less strong selective pressure on relatively few genes, such as coat color genes or genes controlling for body size, could have led to conspicuous phenotypic adaptation to local or regional environments in forms that might otherwise still interbreed when they meet (again) in the wild.


Introgressive Hybridization Brown Hare European Hare Mountain Hare Hare Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves PC, Ferrand N (1999) Genetic variability in Portuguese populations of the Iberian hare, Lepus granatensis. Folia Zool 48 (Suppl 1) pp 3–10.Google Scholar
  2. Alves PC, Branco M, Matias O, Ferrand N (2000) New genetic variation in the European hares, Lepus granatensis and L. europaeus. Biochem Genet 38:87–96.PubMedCrossRefGoogle Scholar
  3. Alves PC, Ferrand N, Suchentrunk F (2001) Developmental stability and protein heterozygosity in a local population of Iberian hares (Lepus granatensis). Mamm Biol 66:238–250.Google Scholar
  4. Alves PC, Ferrand N, Suchentrunk F, Harris DJ (2003) Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. Mol Phylogen Evol 27:70–80.CrossRefGoogle Scholar
  5. Alves PC, Harris DJ, Melo-Ferreira J, Branco M, Ferrand N, Suchentrunk F, Boursot P(2006) Hares on thin ice: introgression of mitochondrial DNA in hares and its implications for recent phylogenetic analyses. Mol Phylogen Evol 40:640–641.CrossRefGoogle Scholar
  6. Angermann R (1965) Revision der palaearktischen und äthiopischen Arten der Gattung Lepus (Leporidae, Lagomorpha) (in German). Diss. Thesis. Humboldt University, Berlin.Google Scholar
  7. Angermann R (1983) The taxonomy of Old World Lepus. Acta Zool Fenn 174:17–21.Google Scholar
  8. Anderson MJ (2003) PCO: a FORTRAN computer program for principal coordinate analysis. Department of Statistics, University of Auckland, New Zealand.∼mja.
  9. Ballard JWO, Chernoff B, Avis CJ (2002) Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology, or behavior in Drosophila simulans. Evolution 56:527–545.PubMedGoogle Scholar
  10. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744.PubMedCrossRefGoogle Scholar
  11. Belkhir K (1999) GENETIX, logiciel sous WindowsTM pour la génétique des populations. Laboratoire Génome et Populations, CNRS UPR 9060, Université de Montpellier II.Google Scholar
  12. Ben Slimen H, Suchentrunk F, Memmi A, Ben Ammar Elgaaied A (2005) Biochemical genetic relationships among Tunisian hares (Lepus sp.), South African cape hares (L. capensis), and European brown hares (L. europaeus). Biochem Genet 43:577–596.PubMedCrossRefGoogle Scholar
  13. Ben Slimen H, Suchentrunk F, Memmi A, Sert H, Kryger U, Alves PC, Ben Ammar Elgaaied A (2006) Evolutionary relationships among hares from North Africa (Lepus sp.), South African cape hares (L. capensis), and European brown hares (L. europaeus), as inferred from mtDNA PCR-RFLP and allozyme data. J Zool Syst Evol Res 44:88–99.CrossRefGoogle Scholar
  14. Ben Slimen H, Suchentrunk F, Shahin AAB, Ben Ammar Elgaaied A (2007) Phylogenetic analysis of mtCR-1 sequences of Tunisian and Egyptian hares (Lepus sp. or spp., Lagomorpha) with different coat colours. Mamm Biol 72:224–239.CrossRefGoogle Scholar
  15. Ben Slimen H, Suchentrunk F (in press) On shortcomings of using mtDNA sequence divergence for the systematics of hares (genus Lepus): an example from cape hares. Mamm. Biol.Google Scholar
  16. Bonhomme F, Fernandez J, Palacios F, Catalan J, Machordon A (1986) Charactérisation biochimique du complex d4espèces du genre Lepus en Espagne. Mammalia 50:495–506.CrossRefGoogle Scholar
  17. Cervantes FA, Lorenzo C, Yates TL (2002) Genetic variation in populations of Mexican lagomorphs. J Mammal 83:1077–1086.CrossRefGoogle Scholar
  18. Ellerman JR, Morrison Scott TCS (1951) Checklist of Palaearctic and Indian mammals 1758–1946. British Museum of Natural History, London.Google Scholar
  19. Estonba A, Solís A, Iriondo M, Sanz-Martín M, Péres-Suárez, Markov G, Palacios F (2006) The genetic distinctiveness of the three Iberian hare species: Lepus europaeus, L. granatensis, and L. castroviejoi. Mamm Biol 71:52–59.CrossRefGoogle Scholar
  20. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformat Online 1:47–50.Google Scholar
  21. Felsenstein J (1995) PHYLIP (Phylogeny Inference Package), Version 3.57c. University of Washington, Seattle.Google Scholar
  22. Fickel J, Schmidt A, Putze M, Spittler H, Ludwig A, Streich WJ, Pitra C (2005) Genetic structure of populations of European brown hare: implications for management. J Wildl Manage 69:760–770.CrossRefGoogle Scholar
  23. Flux JEC (1983) Introduction to taxonomic problems in hares. Acta Zool Fenn 174:7–10.Google Scholar
  24. Flux JEC (1990) Brown hare. In: King C (ed) The handbook of New Zealand mammals. Oxford University Press, Auckland, pp 161–172.Google Scholar
  25. Flux JEC, Angermann R (1990) Hares and jackrabbits. In: Chapman JA, Flux JEC (eds) Hares and pikas. Status Survey and Conservation Action Plan, IUCN/SSC Lagomorph Specialist Group, Gland, Switzerland, pp 61–94.Google Scholar
  26. Grillitsch M, Hartl GB, Suchentrunk F, Willing R (1992) Allozyme evolution and the molecular clock in the Lagomorpha. Acta Theriol 37:1–13.Google Scholar
  27. Halanych KM, Robinson TJ (1999) Multiple substitutions affect the phylogenetic utility of cytochrome b and 12S rDNA data: examining the rapid radiation in leporid (Lagomorpha) evolution. J Mol Evol 48:369–379.PubMedCrossRefGoogle Scholar
  28. Harris JD, Froufe E (2005) Taxonomic inflation: species concept or historical geopolitical bias? Trends Ecol Evol 20:6–7.CrossRefGoogle Scholar
  29. Hartl GB, Suchentrunk F, Nadlinger K, Willing R (1993) An integrative analysis of genetic differentiation in the brown hare Lepus europaeus based on morphology, allozymes, and mitochondrial DNA. Acta Theriol 38 (Suppl 2):33–57.Google Scholar
  30. Hoffmann RS, Smith AT (2005) Order Lagomorpha. In: Wilson DE, Reeder DAM (eds) Mammal species of the world, 3rd edn. vol 1. John Hopkins Univ Press, Baltimore, pp 185–211.Google Scholar
  31. Irwin DE, Bensch S, Irwin JH, Price TD (2005) Speciation by distance in a ring species. Science 307:414–116.PubMedCrossRefGoogle Scholar
  32. Kasapidis P, Suchentrunk F, Magoulas A, Kotoulas G (2005) The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. Mol Phylogen Evol 34:55–66.CrossRefGoogle Scholar
  33. Koh HS, Chun TJ, Yoo HS, Zhang YP, Wang X, Zhang M, Wu CH (2001) Mitochondrial cytochrome b gene sequence diversity in the Korean hare, Lepus coreanus Thomas (Mammalia, Lagomorpha). Biochem Genet 39:417–429.PubMedCrossRefGoogle Scholar
  34. Kryger U (2002) Genetic variation among South African hares (Lepus sp.) as inferred from mitochondrial DNA and microsatellites. PhD Thesis, University of Pretoria, RSA.Google Scholar
  35. Kumar S, Tamura K, Joobsen I, Nei M (2001) MEGA 2.1: Molecular evolutionary genetics analysis software. Version 2.1. Arizona State University, Tempe.Google Scholar
  36. Lee MSY (2003) Species concepts and species reality: salvaging a Linnaean rank. J Evol Biol 16:179–188.PubMedCrossRefGoogle Scholar
  37. Mamuris Z, Sfougaris AI, Stamatis C (2001) Genetic structure of Greek brown hares (Lepus europaeus) as revealed by mtDBNA RFLP-PCR analysis: implications for conserving genetic diversity. Biol Conserv 101:187–196.CrossRefGoogle Scholar
  38. Mamuris Z, Sfougaris AI, Stamatis C, Suchentrunk F (2002) Assessment of genetic structure of Greek brown hare (Lepus europaeus) populations based on variation in random amplified polymorphic DNA (RAPD). Biochem Genet 40:323–338.PubMedCrossRefGoogle Scholar
  39. Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC (2005) Extensive introgression of mountain hare mitochondrial DNA into three Lepus species in Northern Iberia. Mol Ecol 14:2459–2464.PubMedCrossRefGoogle Scholar
  40. Myers K, MacInnes CD (1981) Proceedings of the World Lagomorph Conference, August 1979, Univ. of Guelph, Guelph, Ontario.Google Scholar
  41. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York.Google Scholar
  42. Palacios F (1989) Biometric and morphologic features of the species of the genus Lepus in Spain. Mammalia 53:227–263.CrossRefGoogle Scholar
  43. Pérez-Suárez G, Palacios F, Boursot P (1994) Speciation and paraphyly in western Mediterranean hares (Lepus castrovejoi, L. europaeus, L. granatensis, and L. capensis) revealed by mitochondrial DNA phylogeny. Biochem Genet 32:423–436.PubMedCrossRefGoogle Scholar
  44. Petter F (1959) Eléments d'une révision des lièvres africains du sous-genre Lepus. Mammalia 23:41–67.CrossRefGoogle Scholar
  45. Petter F (1961) Eléments d'une révision des lièvres européens et asiatiques du sous-genre Lepus. Z Säugetierkd 26:1–11.Google Scholar
  46. Petter F, Saint Girons MC (1972) Les Lagomorphs du Maroc. Soc Sci Nat Phys Maroc Bull 52:121–129.Google Scholar
  47. Pierpaoli M, Riga F, Trocchi V, Randi E (1999) Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing. Mol Ecol 8:1805–1817.PubMedCrossRefGoogle Scholar
  48. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Heredity 95:536–539.CrossRefGoogle Scholar
  49. Rice WS (1989) Analysing tables of statistical tests. Evolution 43:223–225.CrossRefGoogle Scholar
  50. Riga F, Trocchi V, Randi E, Toso S (2001) Morphometric differentiation between the Italian hare (Lepus corsicanus De Winton, 1898) and the European brown hare (Lepus europaeus Pallas, 1778). J Zool Lond 253:241–252.CrossRefGoogle Scholar
  51. Richardson BJ, Baverstock PR, Adams M (1986) Allozyme electrophoresis. A handbook for animal systematics and population studies. Academic Press, San Diego.Google Scholar
  52. Robinson TJ, Matthee CA (2005) Phylogenetic and evolutionary origins of the Leporidae: a review of cytogenetics, molecular analyses and a supermatrix analysis. Mammal Rev 35:231–247.CrossRefGoogle Scholar
  53. Sert H, Suchentrunk F, Erdog˘an A (2005) Genetic diversity in brown hares (Lepus europaeus Pallas, 1778) from Anatolia and differentiation among Anatolian and European populations. Mamm Biol 70:171–186.CrossRefGoogle Scholar
  54. Setzer HW (1958) The hares of Egypt. J Egypt Publ Health Assoc 33:145–151.Google Scholar
  55. Suchentrunk F, Hartl GB, Flux JEC, Parkes J, Haiden A, Tapper S (1998) Allozyme heterozygosity and fluctuating asymmetry in brown hares Lepus europaeus introduced to New Zealand: developmental homeostasis in populations with a bottleneck history. Acta Theriol (Suppl 5):35–52.Google Scholar
  56. Suchentrunk F, Polster K, Giacometti M, Ratti P, Thulin CG, Ruhlé C, Vasil'ev AG, Slotta-Bachmayr L (1999) Spatial partitioning of allozyme variability in European mountain hares (Lepus timidus): gene-pool divergence across a disjunct distributional range? Z Säugetierkd 64:1–11.Google Scholar
  57. Suchentrunk F, Michailov C, Markov G, Haiden A (2000a) Population genetics of Bulgarian brown hares Lepus europaeus: allozymic diversity at zoogeographical crossroads. Acta Theriol 45:1–12.Google Scholar
  58. Suchentrunk F, Alkon PU, Willing R, Yom-Tov Y (2000b) Epigenetic dental variability of Israeli hares (Lepus sp.): ecogenetic or phylogenetic causation? J Zool Lond 252:503–515.CrossRefGoogle Scholar
  59. Suchentrunk F, Jaschke C, Haiden A (2001) Little allozyme and mtDNA variability in brown hares (Lepus europaeus) from New Zealand and Britain—a legacy of bottlenecks? Mamm Biol 66:48–59.Google Scholar
  60. Suchentrunk F, Mamuris Z, Sfougaris AI, Stamatis C (2003) Biochemical genetic variability in brown hares (Lepus europaeus) from Greece. Biochem Genet 41:127–140.PubMedCrossRefGoogle Scholar
  61. Suchentrunk F, Ben Slimen H (2005) A revival of Petter's hypothesis of conspecificity of cape hares (L. capensis) and brown hares (L. europaeus). Mamm Biol 70 (Suppl):38.Google Scholar
  62. Suchentrunk F, Mamuris Z, Stamatis C, Ben Slimen H, Hackländer K, Haerer G, Giacometti M (2005) Introgressive hybridization in wild living mountain hares (L. timidus varronis) and brown hares (L. europaeus) and morphological consequences. Mammal Biol 70 (Suppl 1):39–40.Google Scholar
  63. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526.PubMedGoogle Scholar
  64. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882.CrossRefGoogle Scholar
  65. Thulin CG, Jaarola M, Tegelström H (1997a) The occurrence of mountain hare mitochondrial DNA in wild brown hares. Mol Ecol 6:463–467.PubMedCrossRefGoogle Scholar
  66. Thulin CG, Isaksson M, Tegelström H (1997b) The origin of Scandinavian mountain hares (Lepus timidus). Gibier Faune Sauvage 14:463–475.Google Scholar
  67. Thulin CG, Stone J, Tegelström H, Walker CW (2006) Species assignment and hybrid identification among Scandinavian hares Lepus europaeus and L. timidus. Wildl Biol 12:29–38.Google Scholar
  68. Vapa L, Obreht D, Vapa M, Selmic V (2002) Genetic variability in brown hare (Lepus europaeus) populations in Yugoslavia. Z Jagdwiss 48 (Suppl):261–266.Google Scholar
  69. Vapa L, Davidovic M, Obreht D, Hammer S, Suchentrunk F (2007) Allozyme variability of brown hares (Lepus europaeus) from the Vojvodina (Serbia), compared to central and southeastern European populations. Acta zool. hung. 53:75–87.Google Scholar
  70. Waltari E, Cook JA (2005) Hares on ice: phylogeography and historical demographics of Lepus arcticus, L. othus, and L. timidus (Mammalia: Lagomorpha). Mol Ecol 14:3005–3016.PubMedCrossRefGoogle Scholar
  71. Wilson DE, Reeder DAM (1993) Mammal species of the world: a taxonomic and geographic reference, 2nd edn. Smithsonian Institution Press, Washington, DC.Google Scholar
  72. Wu C, Wu J, Bunch TD, Li Q, Wang Y, Zhang YP (2005) Molecular phylogenetics and biogeography of Lepus in Eastern Asia based on mitochondrial DNA sequences. Mol Phyl Evol 37:45–61.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Franz Suchentrunk
    • 1
  • Hichem Ben Slimen
    • 2
  • Hakan Sert
    • 3
  1. 1.Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
  2. 2.Laboratoire de Génétique Moléculaire, Immunologie et BiotechnologieCampus Universitaire El ManarTunisTunisia
  3. 3.Akdeniz Universitesi, Fen-Edebiyat Fakultesi Biyoloji BolumuAntalyaTurkey

Personalised recommendations