Skip to main content

Incorporation of Non-euclidean Distance Metrics into Fuzzy Clustering on Graphics Processing Units

  • Chapter

Part of the Advances in Soft Computing book series (AINSC,volume 41)


Computational tractability of clustering algorithms becomes a problem as the number of data points, feature dimensionality, and number of clusters increase. Graphics Processing Units (GPUs) are low cost, high performance stream processing architectures used currently by the gaming, movie, and computer aided design industries. Fuzzy clustering is a pattern recognition algorithm that has a great amount of inherent parallelism that allows it to be sped up through stream processing on a GPU. We previously presented a method for offloading fuzzy clustering to a GPU, while maintaining full control over the various clustering parameters. In this work we extend that research and show how to incorporate non-Euclidean distance metrics. Our results show a speed increase of one to almost two orders of magnitude for particular cluster configurations. This methodology is particularly important for real time applications such as segmentation of video streams and high throughput problems.


  • Graphic Processing Unit
  • Cluster Center
  • Covariance Matrice
  • Fuzzy Cluster
  • Distance Metrics

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Uma Shankar, B., Pal, N.R.: FFCM: An effective approach for large data sets. In: Proc. 3rd Int. Conf. Fuzzy Logic, Neural nets, and Soft Computing, IIZUKA, Fukuoka, Japan, pp. 332–332 (1994)

    Google Scholar 

  2. Pal, N.R., Bezdek, J.C.: Complexity reduction for “large image” processing. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32, 598–611 (2002)

    CrossRef  Google Scholar 

  3. Hathaway, R.J., Bezdek, J.C.: Extending fuzzy and probabilistic clustering to very large data sets. Computational Statistics & Data Analysis 51, 215–234 (2006)

    CrossRef  MathSciNet  Google Scholar 

  4. Harris, C., Haines, K.: Iterative Solutions using Programmable Graphics Processing Units. In: 14th IEEE International Conference on Fuzzy Systems 2005, May 2005, pp. 12–18. IEEE Computer Society Press, Los Alamitos (2005)

    CrossRef  Google Scholar 

  5. Anderson, D., Luke, R., Keller, J.M.: Speedup of Fuzzy Clustering Through Stream Processing on Graphics Processing Units. IEEE Transactions on Fuzzy Systems, in review (2006)

    Google Scholar 

  6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  7. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, San Francisco (1982)

    Google Scholar 

  8. Pharr, M., Fernando, R.: GPU Gems 2. Addison-Wesley, Reading (2005)

    Google Scholar 

  9. GPGPU (Nov.18, 2006),

  10. Owens, J.D., et al.: A Survey of General-Purpose Computation on Graphics Hardware. In: Eurographics 2005, State of the Art Reports (August 2005)

    Google Scholar 

  11. Nvidia Corp.: GeForce 8800 (Nov.18, 2006),

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, D., Luke, R.H., Keller, J.M. (2007). Incorporation of Non-euclidean Distance Metrics into Fuzzy Clustering on Graphics Processing Units. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)