Skip to main content

Impacts of Grazing and Browsing by Large Herbivores on Soils and Soil Biological Properties

  • Chapter

Part of the Ecological Studies book series (ECOLSTUD,volume 195)

Herbivores can have a wide range of effects on terrestrial ecosystems. Some of these effects are direct, such as the removal and consumption of herbage—which can vary some 100-fold across terrestrial ecosystems from less than 1% to greater than 60% (McNaughton et al. 1989)—treading on soil and vegetation, and the return of excreta (Floate 1981). Herbivores also have important indirect effects on ecosystems, altering rates of nutrient cycling and changing nutrient availability to plants (Bardgett and Wardle 2003; Bardgett 2005). These indirect effects of herbivores on ecosystems are mediated by feedbacks that occur between plants and below-ground decomposer communities, and especially soil microbes, which play a central role regulating nutrient availability to plants.

Keywords

  • Root Biomass
  • Nutrient Cycling
  • Large Herbivore
  • Soil Biological Property
  • Soil Nutrient Cycling

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-72422-3_8
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-72422-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augustine DJ, Frank DA (2001) Effects of migratory ungulates on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82:3149–3162.

    CrossRef  Google Scholar 

  • Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J Wildl Manage 52:1165–1183.

    Google Scholar 

  • Ayres E, Heath J, Possell M, Black HIJ, Kerstiens G, Bardgett RD (2004) Tree physiological responses to above-ground herbivory directly modify below-ground processes of soil carbon and nitrogen cycling. Ecol Lett 7:469–479.

    CrossRef  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press. Oxford, UK, pp 242.

    Google Scholar 

  • Bardgett RD, Leemans DK, Cook R, Hobbs P (1997) Seasonality of the soil biota of grazed and ungrazed hill grasslands. Soil Biol Biochem 29:1285–1294.

    CrossRef  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore mediated linkages between above-ground and below-ground communities. Ecology 84:2258–2268.

    CrossRef  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878.

    CrossRef  CAS  Google Scholar 

  • Bardgett RD, Jones AC, Jones DL, Kemmitt SJ, Cook R, Hobbs P (2001) Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biol Biochem 33:1653–1664.

    CrossRef  CAS  Google Scholar 

  • Bokhari UG, Singh JS (1974) Effects of temperature and clipping on growth, carbohydrate reserves and root exudation of western wheatgrass in hydroponic culture. Crop Sci 14:790–794.

    Google Scholar 

  • Brooker R, Van der Wal R (2003) Can soil temperature direct the composition of high Arctic plant communities? J Veg Sci 14:535–542.

    CrossRef  Google Scholar 

  • Chaneton EJ, Lemcoff JH, Lavado RS (1996) Nitrogen and phosphorus cycling in grazed and ungrazed plots in a temperate subhumid grassland in Argentina. JAppl Ecol 33:291–302.

    CrossRef  Google Scholar 

  • Chesson A (1997) Plant degradation by ruminants: parallels with litter decomposition in soils. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK, pp 47–66.

    Google Scholar 

  • Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747.

    PubMed  CrossRef  CAS  Google Scholar 

  • Coughenour MB (1991) Biomass and N responses to grazing of upland steppe on Yellowstone’s northern winter range. J Appl Ecol 28:71–82.

    CrossRef  Google Scholar 

  • Dyer MI, Bokhari UG (1976) Plant–animal interactions: Studies of the effects of grasshopper grazing on blue grama grass. Ecology 57:762–772.

    CrossRef  Google Scholar 

  • Dyer MI, Turner CL, Seastedt TR (1993) Herbivory and its consequences. Ecol Appl 3:10–16.

    CrossRef  Google Scholar 

  • Findlay S, Carreiro M, Krischik V, Jones CG (1996) Effects of damage to living plants on leaf litter quality. Ecol Appl 6:269–275.

    CrossRef  Google Scholar 

  • Floate MJS (1970a) Mineralization of nitrogen and phosphorus from organic materials of plant and animal origin and its significance in the nutrient cycle in grazed upland hills and soils. J Brit Grassland Soc 25:295–302.

    CrossRef  CAS  Google Scholar 

  • Floate MJS (1970b) Decomposition of organic materials from hill soils and pastures II. Comparative studies on the mineralization of carbon, nitrogen and phosphorus from plant materials and sheep faeces. Soil Biol Biochem 2:173–185.

    CrossRef  CAS  Google Scholar 

  • Floate MJS (1981) Effects of grazing by large herbivores on N cycling in agricultural ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles–processes, ecosystem strategies and management impacts. Ecol Bull Swedish Nature Science Research Council, Stockholm, pp 585–597.

    Google Scholar 

  • Frank DA, Evans RD (1997) Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78:2238–2248.

    CrossRef  Google Scholar 

  • Frank DA, Groffman PM (1998) Ungulate vs. landscape control of soil carbon and nitrogen processes in grasslands of Yellowstone National Park. Ecology 79:2229–2241.

    CrossRef  Google Scholar 

  • Frank DA, McNaughton SJ (1992) The ecology of plants, large mammalian herbivores, and drought in Yellowstone National Park. Ecology 73:2043–2058.

    CrossRef  Google Scholar 

  • Guitian R, Bardgett RD (2000) Plant and soil microbial response to defoliation in temperate semi-natural grassland. Plant Soil 220:271–277.

    CrossRef  CAS  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402.

    CrossRef  Google Scholar 

  • Hamilton EW, Giovannini EW, Moses, MS, Coleman JS, McNaughton SJ (1998) Biomass and mineral element responses of a Serengeti short-grass species to nitrogen supply and defoliation: Compensation requires a critical [N]. Oecologia 116:407–418.

    CrossRef  Google Scholar 

  • Harrison KA, Bardgett RD (2003) How browsing by red deer impacts on litter decomposition in a native regenerating woodland in the Highlands of Scotland. Biol Fert Soils 38:393–399.

    CrossRef  Google Scholar 

  • Harrison KA, Bardgett RD (2004) Browsing by red deer negatively impacts on soil nitrogen availability in regenerating native forest. Soil Biol Biochem 36:115–126.

    CrossRef  CAS  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. TREE 15:238–243.

    PubMed  Google Scholar 

  • Haukioja E, Ruohomaki K, Senn J, Soumela J, Walls M (1990) Consequences of herbivory in the mountain birch (Betula pubescens spp tortuosa): Importance of the functional organisation of the tree. Oecologia 82:238–247.

    CrossRef  Google Scholar 

  • Holland JN, Cheng W, Crossley Jr DA (1996) Herbivore-induced changes in plant carbon allocation: Assessment of below-ground carbon fluxes using C-14. Oecologia 107:87–94.

    CrossRef  Google Scholar 

  • Holland EA, Detling JK (1990) Plant response to herbivory and below-ground nitrogen cycling. Ecology 71:1040–1049.

    CrossRef  Google Scholar 

  • Kielland K, Bryant JP (1998) Moose herbivory in Taiga: Effects on biochemistry and vegetation dynamics in primary succession. Oikos 82:377–383.

    CrossRef  Google Scholar 

  • King LK, Hutchinson KJ (1976) The effects of sheep stocking intensity on the abundance and distribution of mesofauna in pastures. J Appl Ecol 13:41–55.

    CrossRef  Google Scholar 

  • King LK, Hutchinson KJ Greenslade P (1976) The effects of sheep numbers on associations of Collembola in sown pastures. J Appl Ecol 13:731–739.

    CrossRef  Google Scholar 

  • Lehtilä K, Haukioja E, Kaitaniemei P, Laine RA (2000) Allocation of resources within mountain birch canopy after simulated winter browsing. Oikos 90:160–170.

    CrossRef  Google Scholar 

  • Mawdsley JL, Bardgett RD (1997) Continuous defoliation of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and associated changes in the composition and activity of the microbial population of an upland grassland soil. Biol Fert Soils 24:52–58.

    CrossRef  CAS  Google Scholar 

  • McIntosh PD, Allen RB, Scott N (1997) Effects of exclosure and management on biomass and soil nutrient pools in seasonally dry high county, New Zealand. J Environ Manage 51:169–186.

    CrossRef  Google Scholar 

  • McNaughton SJ (1984) Grazing lawns: animals in herds, plant form and co-evolution. Am Nat 124:863–886.

    CrossRef  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1997) Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278:1798–1800.

    PubMed  CrossRef  CAS  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592.

    CrossRef  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142–144.

    PubMed  CrossRef  CAS  Google Scholar 

  • McNaughton SJ, Ruess RW, Seagle SW (1988) Large mammals and process dynamics in African ecosystems. Herbivorous mammals affect primary productivity and regulate recycling balances. BioSci 38:794–800.

    CrossRef  Google Scholar 

  • Mikola J, Yeates GW, Barker GM, Wardle DA, Bonner KI (2001a) Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92:333–343.

    CrossRef  Google Scholar 

  • Mikola J Yeates GW, Wardle DA, Barker GM, Bonner KI (2001b) Response of soil food-web structure to defoliation of different plant species combinations in an experimental grassland community. Soil Biol Biochem 33:205–214.

    CrossRef  CAS  Google Scholar 

  • Milchunas DG, Laurenroth WK (1993) Quantitative effects of grazing on vegetation and soil over a global range of environments. Ecol Monogr 63:327–366.

    CrossRef  Google Scholar 

  • Neff JC, Reynolds, RL, Belnap, J, Lamothe, P (2005) Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15:87–95.

    CrossRef  Google Scholar 

  • Pastor J Dewey B, Naiman RJ, McInnes PF, Cohen Y (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74:467–480.

    CrossRef  Google Scholar 

  • Rhoades DF (1985) Offensive–defensive interactions between herbivores and plants: their relevance in herbivore population dynamics and ecological theory. Am Nat 125:205–238.

    CrossRef  Google Scholar 

  • Ritchie ME, Tilman D, Knops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177.

    CrossRef  Google Scholar 

  • Ruess RW, Hendrick RL, Bryant JP (1998) Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79:2706–2720.

    CrossRef  Google Scholar 

  • Ruess RW, Seagle SW (1994) Landscape patterns in soil microbial processes in the Serengeti National Park, Tanzania. Ecology 75:892–904.

    CrossRef  Google Scholar 

  • Stark S, Tuomi J, Strömmer R, Helle T (2003) Non-parallel changes in soil microbial carbon and nitrogen dynamics due to reindeer grazing in northern boreal forests. Ecography 26:51–59.

    CrossRef  Google Scholar 

  • Stark S, Wardle DA, Ohtonen R, Helle T, Yeates GW (2000) The effect of reindeer grazing on decomposition, mineralisation and soil biota in a dry oligotrophic Scots Pine forest. Oikos 90:301–310.

    CrossRef  Google Scholar 

  • Tracy BF, Frank DA (1998) Herbivore influence on soil microbial biomass and N mineralisation in a northern grassland ecosystem: Yellowstone National Park. Oecologia 114:556–562.

    CrossRef  Google Scholar 

  • Van der Wal R, Bardgett RD, Harrison KA, Stien A (2004) Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography 27:242–252.

    CrossRef  Google Scholar 

  • Van der Wal R, Brooker R, Cooper E, Langvatn R (2001) Differential effects of reindeer on high Arctic lichens. J Veg Sci 12:705–710.

    CrossRef  Google Scholar 

  • Van der Wal R, Pearce ISK, Brooker R, Scott D, Welch D, Woodin SJ (2003) Interplay between nitrogen deposition and grazing causes habitat degradation. Ecol Lett 6:141–146.

    CrossRef  Google Scholar 

  • Van Wijnen HJ, Van der Wal R (1999) The impact of herbivores on nitrogen mineralisation rate: Consequences for salt-marsh succession. Oecologia 118:225–231.

    CrossRef  Google Scholar 

  • Verchot LV, Groffman PM, Frank DA (2002) Landscape versus ungulate control of gross mineralisation and gross nitrification in semi-arid grassland of Yellowstone National Park. Soil Biol Biochem 34:1691–1699.

    CrossRef  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea–how can it occur. Biogeochem 13:87–115.

    CrossRef  Google Scholar 

  • Walsingham JM (1976) Effect of sheep grazing on the invertebrate population of agricultural grassland. Proc R Soc Dublin 11:297–304.

    Google Scholar 

  • Wardle DA, Barker GM, Yeates GW, Bonner KI, Ghani A (2001) Introduced browsing mammals in New Zealand natural forests: above-ground and below-ground consequences. Ecol Monogr 71:587–614.

    CrossRef  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Monogr Pop Biol 34. Princeton University Press, NJ.

    Google Scholar 

  • Wardle DA, Bardget RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harrison, K.A., Bardgett, R.D. (2008). Impacts of Grazing and Browsing by Large Herbivores on Soils and Soil Biological Properties. In: Gordon, I.J., Prins, H.H.T. (eds) The Ecology of Browsing and Grazing. Ecological Studies, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72422-3_8

Download citation