Skip to main content

Nutritional Ecology of Grazing and Browsing Ruminants

  • Chapter

Part of the Ecological Studies book series (ECOLSTUD,volume 195)

Ruminants are, without exception, obligate herbivores subsisting as they do on a diet composed entirely of plant material. However, plant material is a diverse resource and within the Ruminantia there is a range of feeding niches with different herbivore classes focussing their foraging effort on different vegetation types (Hofmann 1989). The plant material available to herbivores comes in a range of morphological types with the major types being grasses, forbs, and browse. Grasses (including the morphologically similar sedges) are monocotyledonous plants characterised by a basal meristem, a low growth form and a relative lack of lignified support structures (except for some of the tall tropical grasses which could be considered to be morphologically classed as browse).

Keywords

  • Condensed Tannin
  • Neutral Detergent Fibre
  • Plant Secondary Metabolite
  • Rumen Fluid
  • Pyrrolizidine Alkaloid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-72422-3_4
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-72422-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alam MR, Poppi DP, Sykes AR (1983) Intake, digestibility and retention time of two forages by kids and lambs. Proc New Zeal Soc An 43:119–121.

    Google Scholar 

  • Alam MR, Borens F, Poppi DP, Sykes AR (1984) Comparative digestion in sheep and goats. In: Barker SK, Gawthorne JB, Mackintosh JB, Purser DB (eds) Ruminant physiology–concepts and consequences. Proceedings Symposium, University of Western Australia, Perth, p 184.

    Google Scholar 

  • Alam MR, Lawson GD, Poppi DP, Sykes AR (1987a) Comparison of the site and extent of digestion of nutrients of a forage in kids and lambs. J Agr Sci 109:583–589.

    CrossRef  Google Scholar 

  • Alam MR, Poppi DP, Sykes AR (1987b) Comparative aspects of water-intake and its flow through the gastrointestinal-tract of kids and lambs. J Agr Sci 108:253–256.

    CrossRef  Google Scholar 

  • Allison MJ, Reddy CA (1984) Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society of Microbiology, Washington, DC, pp 248–256.

    Google Scholar 

  • Annison, EF, Lindsay, DB and Nolan, JV (2002). Digestion and metabolism, In:Freer M, Dove H (eds) Sheep nutrition. CABI/CSIRO, Wallingford New York, pp 95–118.

    Google Scholar 

  • Austin PJ, Suchar LA, Robbins CT, Hagerman AE (1989) Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle. J Chem Ecol 15:1335–1347.

    CrossRef  CAS  Google Scholar 

  • Bell RHV (1971) Grazing ecosystem in Serengeti. Sci Am 225:86–93.

    CrossRef  Google Scholar 

  • Brooker JD, O’Donovan LA, Skene I, Clarke K, Blackall L, Muslera P (1994) Streptococcus caprinus sp.nov., a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18:313–318.

    CrossRef  CAS  Google Scholar 

  • Carlson JR, Breeze RG (1984) Ruminal metabolism of plant toxins with emphasis on indolic compounds. J Anim Sci 58:1040–1049.

    PubMed  CAS  Google Scholar 

  • Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327.

    Google Scholar 

  • Clauss M, Lechner-Doll M, Streich WJ (2002) Faecal particle size distribution in captive wild ruminants: an approach to the browser/grazer dichotomy from the other end. Oecologia 131:343–349.

    CrossRef  Google Scholar 

  • Clauss M, Lechner-Doll M, Streich WJ (2003) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102:253–262.

    CrossRef  Google Scholar 

  • Clauss M, Gehrke J, Hatt JM, Dierenfeld ES, Flach EJ, Hermes R, Castell J, Streich WJ, Fickel J (2005) Tannin-binding salivary proteins in three captive rhinoceros species. Comp Biochem Phys A 140:67–72.

    CrossRef  CAS  Google Scholar 

  • Clemens ET, Maloiy GMO (1984) Colonic absorption and secretion of fluids, electrolytes and organic-acids in East-African wild ruminants. Comp Biochem Phys A 77:51–56.

    CrossRef  CAS  Google Scholar 

  • Clemens ET, Maloiy GMO, Sutton JD (1983) Molar proportions of volatile fatty-acids in the gastrointestinal-tract of East-African wild ruminants. Comp Biochem Phys A 76:217–224.

    CrossRef  CAS  Google Scholar 

  • Demment MW, Longhurst WM (1987) Browsers and grazers: constraints on feeding ecology imposed by gut morphology and body size. In: Santana OP, Da Silva AG, Foote WC (eds) Proceedings of the IVth International Conference on Goats, Symposia, vol 2, March 8–13, Brasilia, Brazil, pp 989–1004.

    Google Scholar 

  • deVega A, Poppi DP (1997) Extent of digestion and rumen condition as factors affecting passage of liquid and digesta particles in sheep. J Agr Sci 128:207–215.

    CrossRef  Google Scholar 

  • Ditchkoff SS (2000) A decade since “diversification of ruminants”: has our knowledge improved? Oecologia 125:82–84.

    CrossRef  Google Scholar 

  • Duncan AJ, Milne JA (1992) Rumen microbial degradation of allyl cyanide as a possible explanation for the tolerance of sheep to brassica-derived glucosinolates. J Sci Food Agr 58:15–19.

    CrossRef  CAS  Google Scholar 

  • Foley WJ, Iason GR, McArthur C (1999) Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years? Pages In: Jung H-JG, Fahey GC (eds) Nutritional ecology of herbivores. Proceedings Vth International Symposium Nutrition of Herbivores, Am Soc Anim Sci, Savoy, IL, pp 130–209.

    Google Scholar 

  • Foose TM (1982) Trophic strategies of ruminant versus non-ruminant herbivores. Thesis. University of Chicago.

    Google Scholar 

  • Gordon IJ, Illius AW (1994) The functional significance of the browser-grazer dichotomy in African ruminants. Oecologia 98:167–175.

    CrossRef  Google Scholar 

  • Gordon IJ, Illius AW (1996) The nutritional ecology of African ruminants - a reinterpretation. J Anim Ecol 65:18–28.

    CrossRef  Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry. Academic Press, London.

    Google Scholar 

  • Hegarty RS (2004) Genotype differences and their impact on digestive tract function of ruminants: a review. Aust J Exp Agr 44:458–467.

    CrossRef  Google Scholar 

  • Hennessy, DR (1993) Pharmokinetic disposition of benzimidazole drugs in the ruminant gastrointestinal tract. Parasitol Today 9:329–333.

    PubMed  CrossRef  CAS  Google Scholar 

  • Hendricksen RE, Poppi DP, Minson DJ (1981) The voluntary intake, digestibility and retention time by cattle and sheep of stem and leaf fractions of a tropical legume (Lablab purpureus). Aust J Agr Res 32:389–398.

    CrossRef  CAS  Google Scholar 

  • Hofmann RR (1973) The ruminant stomach: stomach structure and feeding habits of East African game ruminants. East African Literature Bureau, Nairobi.

    Google Scholar 

  • Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443.

    CrossRef  Google Scholar 

  • Hofmann RR, Stewart DRM (1972) Grazer or browser: a classification based on the stomach structure and feeding habits of East African ruminants. Mammalia 36:226–240.

    CrossRef  Google Scholar 

  • Hungate RE (1966) The rumen and its microbes. Academic Press, New York.

    Google Scholar 

  • Hungate RE, Phillips GD, Hungate DP, MacGregor A (1960) A comparison of rumen fermentation in European and Zebu cattle. J Agr Sci 54:196–201.

    CrossRef  Google Scholar 

  • Iason GR, Van Wieren SE (1999) Digestive and ingestive adaptations of mammalian herbivores to low-quality forage. In: Olff H, Brown VK, Drent RH (eds) Herbivores: between plants and predators. Blackwell, Oxford, pp 337–369.

    Google Scholar 

  • Ishaque M, Thomas PC, Rook JAF (1971) Consequences to host of changes in rumen microbial activity. Nature–New Biol 231:253–256.

    PubMed  CAS  Google Scholar 

  • Jarman PJ (1974) The social organisation of antelope in relation to their ecology. Behaviour 48:215–266.

    CrossRef  Google Scholar 

  • Jones RJ (1981) Does ruminal metabolism of mimosine explain the absence of Leucaena toxicity in Hawaii? Aust Vet J 57:55–56.

    PubMed  CrossRef  CAS  Google Scholar 

  • Jones RJ, Meyer JHF, Bechaz FM, Stoltz MA, Palmer B, Van der Merwe G (2001) Comparison of rumen fluid from South African game species and from sheep to digest tanniniferous browse. Aust J Agr Res 52:453–460.

    CrossRef  Google Scholar 

  • Jones WT, Mangan JL (1977) Complexes of condensed tannins of sainfoin (Onobrychis viccifolia Scop.) with fraction 1 leaf protein and submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. J Sci Food Agr 28:126–136.

    CrossRef  CAS  Google Scholar 

  • Lanigan GW (1970) Metabolism of pyrrolizidine alkaloids in the ovine rumen II. Some factors affecting rate of alkaloid breakdown by rumen fluid in vitro. Aust J Agr Res 21:633–639.

    CrossRef  CAS  Google Scholar 

  • Larue R, Yu ZT, Parisi VA, Egan AR, Morrison M (2005) Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol 7:530–543.

    PubMed  CrossRef  CAS  Google Scholar 

  • Long RJ, Apori SO, Castro FB, Orskov ER (1999) Feed value of native forages of the Tibetan Plateau of China. Anim Feed Sci Tech 80:101–113.

    CrossRef  Google Scholar 

  • Mackie RI, McSweeney CS, Klieve AV (2002) Microbial ecology of the ovine rumen. In: Freer M, Dove H (eds) Sheep nutrition. CABI/CSIRO, Wallingford/New York, pp 71–94.

    CrossRef  Google Scholar 

  • Mackie RI, Aminov RI, Hu WP, Klieve AV, Ouwerkerk D, Sundset MA, Kamagata Y (2003) Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol 69:6808–6815.

    PubMed  CrossRef  CAS  Google Scholar 

  • Majak W (1992) Metabolism and absorption of toxic glycosides by ruminants J Range Manage 45:67–71.

    CrossRef  Google Scholar 

  • Makkar HPS, Becker K (1998) Adaptation of cattle to tannins: role of proline-rich proteins in oak-fed cattle. Anim Sci 67:277–281.

    CAS  Google Scholar 

  • Mattocks AR (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, San Diego.

    Google Scholar 

  • McArthur C, Sanson GD, Beal AM (1995) Salivary proline-rich proteins in mammals: roles in oral homeostasis and counteracting dietary tannin. J Chem Ecol 21:663–691.

    CrossRef  CAS  Google Scholar 

  • McEwan NR, Abecia L, Regensbogenova M, Adam CL, Findlay PA, Newbold CJ (2005) Rumen microbial population dynamics in response to photoperiod. Lett Appl Microbiol 41:97–101.

    PubMed  CrossRef  CAS  Google Scholar 

  • Mehansho H, Hagerman A, Clements S, Butler L, Rogler J, Carlson DM (1983) Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Proc Nat Acad Sci 80:3948–3952.

    PubMed  CrossRef  CAS  Google Scholar 

  • Miller SM, Brooker JD, Blackall LL (1995) A feral goat rumen fluid inoculum improves nitrogen-retention in sheep consuming a mulga (Acacia aneura) diet. Aust J Agr Res 46:1545–1553.

    CrossRef  CAS  Google Scholar 

  • Miller SM, Brooker JD, Phillips A, Blackall LL (1996) Streptococcus caprinus is ineffective as a rumen inoculum to improve digestion of mulga (Acacia aneura) by sheep. Aust J Agr Res 47:1323–1331.

    CrossRef  Google Scholar 

  • Mould FL (2003) Predicting feed quality - chemical analysis and in vitro evaluation. Field Crop Res 84:31–44.

    CrossRef  Google Scholar 

  • Naurato N, Wong P, Lu Y, Wroblewski K, Bennick A (1999) Interaction of tannin with human salivary histatins. J Agr Food Chem 47:2229–2234.

    CrossRef  CAS  Google Scholar 

  • Norton BW, Moran JB, Nolan JV (1979) Nitrogen metabolism in Brahman cross, buffalo, Banteng and shorthorn steers fed on low-quality roughage. Aust J Agr Res 30:341–351.

    CrossRef  CAS  Google Scholar 

  • Odenyo AA, Osuji PO (1998) Tannin-tolerant ruminal bacteria from East African ruminants. Can J Microbiol 44:905–909.

    PubMed  CrossRef  CAS  Google Scholar 

  • Odenyo AA, McSweeney CS, Palmer B, Negassa D, Osuji PO (1999) In vitro screening of rumen fluid samples from indigenous African ruminants provides evidence for rumen fluid with superior capacities to digest tannin-rich fodders Aust J Agr Res 50:1147–1157.

    CrossRef  CAS  Google Scholar 

  • Oh HK, Sakai T, Jones MB, Longhurst WM (1967) Effect of various essential oils isolated from Douglas Fir needles upon sheep and deer rumen microbial activity. Appl Microbiol 15:777–784.

    PubMed  CAS  Google Scholar 

  • Orskov ER, Benzie D, Kay RNB (1970) The effect of feeding procedure on closure of the oesophageal groove in sheep. Brit J Nutr 24:785–795.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ouwerkerk D, Klieve AV, Forster RJ, Templeton JM, Maguire AJ (2005a Characterization of culturable anaerobic bacteria from the forestomach of an eastern grey kangaroo, Macropus giganteus. Lett Appl Microbiol 41:327–333.

    PubMed  CrossRef  CAS  Google Scholar 

  • Ouwerkerk D, Maguire AJ, Klieve AV (2005b) Reductive acetogenesis in the foregut of macropod marsupials in Australia. In: Soliva CR, Takahashi J, Kreuzer M (eds) Publication Series, vol 27. Institute of Animal Science, EFTH, Zurich, pp 98–101.

    Google Scholar 

  • Parra, R (1978) Comparison of foregut and hindgut fermentation in herbivores. In: Montgomery GG (ed) The ecology of arboreal folivores. Smithsonian Institute, Washington, DC, pp 205–230.

    Google Scholar 

  • Perez-Barberia FJ, Gordon IJ, Illius AW (2001) Phylogenetic analysis of stomach adaptation in digestive strategies in African ruminants. Oecologia 129:498–508.

    Google Scholar 

  • Perez-Barberia FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc R Soc Lond B Bio 271:1081–1090.

    CrossRef  CAS  Google Scholar 

  • Perez-Maldonado RA, Norton BW (1996a) The effects of condensed tannins from Desmodium intortum and Calliandra calothyrsus on protein and carbohydrate digestion in sheep and goats. Brit J Nutr 76:515–533.

    PubMed  CrossRef  CAS  Google Scholar 

  • Perez-Maldonado RA, Norton BW (1996b) Digestion of c-14-labeled condensed tannins from Desmodium intortum in sheep and goats. Brit J Nutr 76:501–513.

    PubMed  CrossRef  CAS  Google Scholar 

  • Poppi DP, Minson DJ, Ternouth JH (1981) Studies of cattle and sheep eating leaf and stem fractions of grasses. 1. The voluntary intake, digestibility and retention time in the reticulo-rumen. Aust J Agr Res 32:99–108.

    CrossRef  CAS  Google Scholar 

  • Robbins CT, Hagerman AE, Hjelijord O, Baker DL (1987a) Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98–107.

    CrossRef  CAS  Google Scholar 

  • Robbins CT, Mole S, Hagerman AE, Hanley TA (1987b) Role of tannins in defending plants against ruminants: reduction in dry matter digestion. Ecology 68:1606–1615.

    CrossRef  CAS  Google Scholar 

  • Robbins CT, Hagerman AE, Austin PJ, McArthur C, Hanley TA (1991) Variation in mammalian physiological responses to a condensed tannin and its ecological implications J Mammal 72:480–486.

    CrossRef  Google Scholar 

  • Robbins CT, Spalinger DE, Vanhoven W (1995) Adaptation of ruminants to browse and grass diets - are anatomical-based browser-grazer interpretations valid? Oecologia 103:208–213.

    CrossRef  Google Scholar 

  • Rosenthal GA, Janzen DH (1979) Herbivores: their interaction with secondary plant metabolites.Academic Press, New York.

    Google Scholar 

  • Smith RH (1980) Kale poisoning: the brassica anaemia factor. Vet Rec 107:12–15.

    PubMed  CAS  Google Scholar 

  • Spalinger DE, Robbins CT, Hanley TA (1993) Adaptive rumen function in elk (Cervus elaphus nelsoni) and mule deer (Odocoileus hemionus hemionus). Can J Zool 71:601–610.

    CrossRef  Google Scholar 

  • Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins 8:95–116.

    PubMed  CAS  Google Scholar 

  • Sundset MA, Cann IOK, Mathiesen SD, Mackie RI (2004) Rumen microbial ecology in reindeer - adaptations to a unique diet. J Anim Feed Sci 13:717–720.

    Google Scholar 

  • Theodorou MK, Gascoyne DJ, Akin DE, Hartley RD (1987) Effect of phenolic acids and phenolics from plant cell walls on rumen-like fermentation in consecutive batch culture. Appl Environ Microbiol 53:1046–1050.

    PubMed  CAS  Google Scholar 

  • Thornton RF, Minson DJ (1973) Relationship between apparent retention time in rumen, voluntary intake, and apparent digestibility of legume and grass diets in sheep. Aust J Agr Res 24:889–898.

    CrossRef  Google Scholar 

  • Tolosa MX, Dinh TV, Klieve AV, Ouwerkerk D, Poppi DP, McLennan SR (2004) Molecular characterisation of rumen bacterial populations in cattle fed molasses diets. Anim Prod Aust 25:328.

    Google Scholar 

  • Tulloh NM (1966a) Physical studies of the alimentary tract of grazing cattle. IV. Dimensions of the tract in lactating and non-lactating cows. New Zeal J Agr Res 9:999–1008.

    Google Scholar 

  • Tulloh NM (1966b) Physical studies of the alimentary tract of grazing cattle. III. Seasonal changes in capacity of the reticulo-rumen of dairy cattle. New Zeal J Agr Res 9:252–260.

    Google Scholar 

  • Van Soest PJ (1982) Nutritional ecology of the ruminant. O&B Books, Corvallis, OR.

    Google Scholar 

  • Van Soest PJ (1994) Nutritional ecology of the ruminant. Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Van Wieren SE (1996) Digestive strategies in ruminants and non-ruminants. University of Wageningen, Netherlands.

    Google Scholar 

  • Wallace RJ (2004) Antimicrobial properties of plant secondary metabolites. P Nutr Soc 63:621–629.

    CAS  Google Scholar 

  • Watkins JBI, Klaassen CD (1986) Xenobiotic biotransformation in livestock: comparison to other species commonly used in toxicity testing. J Anim Sci 63:933–942.

    PubMed  Google Scholar 

  • Watson C, Norton BW (1982) The utilisation of pangola grass hay by sheep and Angora goats. P Aust Soc Anim Prod 41:467–470.

    Google Scholar 

  • Zucker WV (1983) Tannins: does structure determine function? An ecological perspective. Am Nat 121:335–365.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duncan, A.J., Poppi, D.P. (2008). Nutritional Ecology of Grazing and Browsing Ruminants. In: Gordon, I.J., Prins, H.H.T. (eds) The Ecology of Browsing and Grazing. Ecological Studies, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72422-3_4

Download citation