Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 715 Accesses

Abstract

The invention and rapid development of computerized tomography is one of the major medical advances of our time. Current multidetector CT scanners can image the entire chest in 2–5 s, producing up to 1,000 slices, each composed of sub-millimeter isometric voxels. These high signal-to-noise ratio, large field-of-view images provide non-invasive anatomic evaluation of the chest with similar information content to that achievable at autopsy. In vivo physiologic functional information regarding the pulmonary vasculature, systemic vasculature or airways can be obtained by acquiring CT images while administering intravenous contrast media or performing breathing maneuvers, respectively. Expert radiological interpretation of these volume data sets can differentiate diseases that are clinically indistinguishable, but demonstrate unique changes at the gross anatomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  • Aldrich JE, Bilawich AM, Mayo JR (2006a) Radiation doses to patients receiving computed tomography examinations in British Columbia. Can Assoc Radiol J 57:79–85

    PubMed  Google Scholar 

  • Aldrich JE, Chang SD, Bilawich AM, Mayo JR (2006b) Radiation dose in abdominal computed tomography: the role of patient size and the selection of tube current. Can Assoc Radiol J 57:152–158

    PubMed  Google Scholar 

  • Brenner D (2004) Radiation risks potentially associated with low dose CT screening of adult smokers for lung cancer. Radiology 231:440–445

    Article  PubMed  Google Scholar 

  • Brenner DJ, Elliston CD, Hall EJ, Berdon WE (2001) Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol 176:289–296

    CAS  Google Scholar 

  • Cardis E, Vrijheid M, Blettner M et al. (2007) The 15 country collaborative study of cancer risk among radiation workers in the nuclear industry: Estimates of radiation related cancer risks. Radiat Res 167:396–416

    Article  CAS  PubMed  Google Scholar 

  • Cunningham IA (1995) Computed tomography: instrumentation. In: Bronzino JE (ed) The biomedical engineering handbook. CRC Press, Boca Raton, pp 990–1002

    Google Scholar 

  • Di Marco AF, Briones B (1993) Is chest CT performed too often? Chest 103:985–986

    Article  Google Scholar 

  • Di Marco AF, Renston JP (1994) In search of the appropriate use of chest computed tomography. Chest 106:332–333

    Article  Google Scholar 

  • European Community (2000) European guidelines on quality criteria for computer tomography. EUR 16262EN. Office for Official Publication of the European Communities, Luxemberg

    Google Scholar 

  • Fricke B, Donnelly L, Frush D et al. (2003) In plane bismuth breast shields for pediatric CT: Effects on radiation dose and image quality using experimental and clinical data. AJR Am J Roentgenol 180:407–411

    PubMed  Google Scholar 

  • Frush DP, Slack C, Hollingsworth HH et al. (2002) Computer simulated radiation dose reduction for abdominal multidetector CT of pediatric patients. AJR Am J Roentgenol 179:1107–1113

    PubMed  Google Scholar 

  • Greess H, Wolf H, Baum U et al. (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10:391–394

    Article  CAS  PubMed  Google Scholar 

  • Haaga JR, Miraldi F, MacIntyre W, LiPuma JP, Bryan PJ, Wiesen E (1981) The effect of mAs variation upon computed tomography image quality as evaluated by in vivo and in vitro studies. Radiology 138:449–454

    CAS  PubMed  Google Scholar 

  • Henschke CI, McCauley DI, Yankelevitz DF et al. (1999) Early lung cancer action project: overall design and findings from baseline screening. Lancet 354:99–105

    Article  CAS  PubMed  Google Scholar 

  • Hopper KD, King S, Lobell M, TenHave T, Weaver J (1997) The breast: In-plane X-ray protection during diagnostic thoracic CT-shielding with bismuth radioprotective garments. Radiology 205:853–858

    CAS  PubMed  Google Scholar 

  • Huda W (1997) Radiation dosimetry in diagnostic radiology. Am J Roentgenol 169:1487–1488

    CAS  Google Scholar 

  • Hurwitz L, Yoshizumi T, Reiman R et al. (2006) Radiation dose to the female breast from 16 MDCT protocols. AJR Am J Roentgenol 186:1718–1722

    Article  PubMed  Google Scholar 

  • ICRP-60 (1991) Recommendations of the International Commission on Radiological Protection. Pergamon Press, Oxford

    Google Scholar 

  • Itoh H, Ikeda M, Arahata S et al. (2000) Lung cancer screening: minimum tube current reqired for helical CT. Radiology 215:175–183

    CAS  PubMed  Google Scholar 

  • Kachelrieß M, Watzke O, Kalender W (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Physics 28:475–490

    Article  Google Scholar 

  • Kalender WA, Wolf H, Suess C, Gies M, Greess H, Bautz WA (1999a) Dose reduction in CT by on-line tube current control: principles and validation on phantoms and cadavers. Eur Radiol 9:323–328

    Article  CAS  PubMed  Google Scholar 

  • Kalender WA, Wolf H, Suess C (1999b) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Physics 26:2248–2253

    Article  CAS  Google Scholar 

  • Lee C, Haims A, Monico E, Brink J, Forman H (2004) Diagnostic CT scans: assessment of patient physician and radiologist awareness of radiation dose and possible risks. Radiology 231:393–398

    Article  PubMed  Google Scholar 

  • Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK (2007) Automatic patient centering for MDCT: effect on radiation dose. Am J Roentgenol 188:547–552

    Article  Google Scholar 

  • MacKenzie J, Nazario-Larrieu J, Cai T et al. (2007) Reduced-dose CT: Effect on reader evaluation in detection of pulmonary embolism. AJR Am J Roentgenol 189:1371–1379

    Article  PubMed  Google Scholar 

  • Mayo JR, Hartman TE, Lee KS, Primack SL, Vedal S, Müller NL (1995) CT of the chest: minimal tube current required for good image quality with the least radiation dose. Am J Roentgenol 164:603–607

    CAS  Google Scholar 

  • Mayo JR, Whittall KP, Leung AN et al. (1997) Simulated dose reduction in conventional chest CT: validation study. Radiology 202:453–457

    CAS  PubMed  Google Scholar 

  • Mayo JR, Kim KI, MacDonald S et al. (2004) Reduced radiation dose helical chest CT: effect on reader evaluation of structures and lung findings. Radiology 232:749–756

    Article  PubMed  Google Scholar 

  • McGee PL, Humphreys S (1994) Radiation dose associated with spiral computed tomography. Can Assoc Radiol J 45:124–129

    Google Scholar 

  • Mettler FA Jr, Wiest PW, Locken JA, Kelsey CA (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353–359

    Article  PubMed  Google Scholar 

  • Milne E (2006) Female breast radiation exposure (letter). AJR Am J Roentgenol 186:E24

    Article  PubMed  Google Scholar 

  • Musset D, Parent F, Meyer G et al. (2002) Diagnostic strategy for patients with suspected pulmonary embolism: a prospective multicentre outcome study. Lancet 360:1914–1920

    Article  PubMed  Google Scholar 

  • Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI (1990) Low-dose CT of the lungs: preliminary observations. Radiology 175:729–731

    CAS  PubMed  Google Scholar 

  • Naidich DP, Pizzarello D, Garay SM, Müller NL (1994) Is thoracic CT performed often enough? Chest 106:331–332

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa K, Maruyama T, Takayama M, Okada M, Hachiya J, Furuya Y (1991) Determinations of organ doses and effective dose equivalents from computed tomographic examination. Br J Radiol 64:20–28

    Article  CAS  PubMed  Google Scholar 

  • Panzer W, Scheurer C, Zankl M (1989) Dose to patients in computed tomography examinations: results and consequences from a field study in the Federal Republic of Germany. In: Moores BM, Wall BF, Eriskat H, Schibilla H (eds) Optimization of image quality and patient exposure in diagnostic radiology. British Institute of Radiology Report 20, London

    Google Scholar 

  • Parker MS, Hui FK, Camacho MA, Chung JK, Broga DW, Sethi NN (2005) Female breast radiation exposure during CT pulmonary angiography. Am J Roentgenol 185:1228–1233

    Article  Google Scholar 

  • Pentlow KS, Beattie JW, Laughlin JS (1977) Parameters and design considerations for tomographic transmission scanners. In: Ter-Pogossian MM, Phelps ME, (eds) Reconstructive tomography in diagnostic radiology and nuclear medicine. University Park Press, Baltimore, pp 267–279

    Google Scholar 

  • Pierce D, Shimizu Y, Preston D et al. (1996) Studies of the mortality of atomic bomb survivors. Report 12, part 1. Cancer: 1950–1990. Radiat Res 146:1–27

    Article  CAS  PubMed  Google Scholar 

  • Polacin A, Kalender WA, Marchal G (1992) Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology 185:29–35

    CAS  PubMed  Google Scholar 

  • Rothenberg LN, Pentlow KS (1992) Radiation dose in CT. RadioGraphics 12:1225–1243

    CAS  PubMed  Google Scholar 

  • Shrimpton PC, Edyvean S (1998) CT scanner dosimetry. Br J Radiol 71:1–3

    CAS  PubMed  Google Scholar 

  • Sprawls P Jr (1992) AAPM tutorial. CT image detail and noise. RadioGraphics 12:1041–1046

    CAS  PubMed  Google Scholar 

  • Strzelczyk J, Damilakis J, Marx M, Macura K (2007) Facts and controversies about radiation exposure, Part 2: Low level exposures and cancer risk. J Am Coll Radiol 4:32–39

    Article  PubMed  Google Scholar 

  • Swensen SJ, Jett JR, Sloan JA et al. (2002) Screening for lung cancer with low-dose spiral computed tomography. Am J Resp Crit Care Med 165:508–513

    PubMed  Google Scholar 

  • Tack D, De Maertelaer V, Gevenois PA (2003) Dose reduction in multidetector CT using attenuation-based online tube current modulation. AJR Am J Roentgenol 181:331–334

    PubMed  Google Scholar 

  • Tack D, De Maertelaer V, Petit W et al. (2005) Multi-detector row CT pulmonary angiography: Comparison of standard-dose and simulated low-dose techniques. Radiology 236:318–325

    Article  PubMed  Google Scholar 

  • Toth TL, Bromberg NB, Pan TS et al. (2000) A dose reduction X-ray beam positioning system for high-speed multislice CT scanners. Med Physics 27:2659–2668

    Article  CAS  Google Scholar 

  • Tubiana M, Aurengo A, Averbeck D et al. (2005) Dose effect relationships and estimation of the carcinogenic effect of low doses of ionizing radiation. Academie des Sciences and Academie Nationale de Medicine, Paris

    Google Scholar 

  • Tzedakis A, Damilakis J, Perisinakis K, Stratakis J (2005) The effect of z overscanning on patient effective dose from multidetector helical computed tomography examinations. Med Physics 32:1621–1629

    Article  CAS  Google Scholar 

  • Ullrich R, Jernigan M, LC S, Bowles N (1987) Radiation carcinogenesis: time-dose relationships. Radiat Res 111:179–184

    Article  CAS  PubMed  Google Scholar 

  • Zwirewich CV, Mayo JR, Müller NL (1991) Low-dose high-resolution CT of lung parenchyma. Radiology 180:413–417

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayo, J.R., Aldrich, J. (2009). Dose Reduction in Chest CT. In: Rémy-Jardin, M., Rémy, J. (eds) Integrated Cardiothoracic Imaging with MDCT. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72387-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72387-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72386-8

  • Online ISBN: 978-3-540-72387-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics