Petroleum Generation

  • Thomas HantschelEmail author
  • Armin I. Kauerauf

Modeling of geochemical processes encompasses the generation of petroleum and related maturation parameters, such as vitrinite reflectance, molecular biomarkers, and mineral diagenesis. The transformation and maturation of organic matter can be subdivided into three phases: diagenesis, catagenesis and metagenesis (Tissot and Welte, 1984). The term diagenesis is different from that of the rock types. The formation of petroleum and coal with typical depth and temperature intervals is illustrated in Fig. 4.1.


Source Rock Total Organic Carbon Content Hydrogen Index Transformation Ratio Kerogen Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. A. Abu-Ali, J. G. Rudkiewicz, J. G. McGillivray, and F. Behar. Paleozoic petroleum system of central Saudi Arabia. GeoArabia, (4):321–336, 1999.Google Scholar
  2. H. Bahlburg and C Breitkreuz. Grundlagen der Geology. Elsevier GmbH, Muenchen, second edition, 2004.Google Scholar
  3. G. R. Beardsmore and J. P. Cull. Crustal Heat Flow. Cambridge University Press, 2001.Google Scholar
  4. F. Behar, M. Vandenbroucke, Y. Tang, and J. Espitalie. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26: 321–339, 1997.CrossRefGoogle Scholar
  5. S. W. Benson. Thermodynamical Kinetics. Wiley, 1968.Google Scholar
  6. I. O. Blumenstein, R. di Primio, W. Rottke, B. M. Krooss, and R. Littke. Application of biodegradation modeling to a 3d–study in N. Germany, 2006.Google Scholar
  7. A. K. Burnham and R. L. Braun. Global kinetic analysis of complex materials. Energy and Fuels, 13: 1–22, 1999.CrossRefGoogle Scholar
  8. A. K. Burnham and J. J. Sweeney. A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta, 53: 2649–2657, 1989.CrossRefGoogle Scholar
  9. W. D. Carlson, R. A. Donelick, and R. A. Ketcham. Variablility of apatite fission–track annealing kinetics: I . E xperimental results. American Mineralogist, 84: 1213–1223, 1999.Google Scholar
  10. A. D. Carr. A vitrinite kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, 16: 355–377, 1999.CrossRefGoogle Scholar
  11. J. Chen, J. Fu, G. Sheng, D. Liu, and J. Zhang. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils. Organic Geochemistry, 25: 179–190, 1996.CrossRefGoogle Scholar
  12. B. Cramer, E. Faber, P. Gerling, and B. M. Krooss. Reaction kinetics of stable carbon isotopes in natural gas – insights from dry, open system pyrolysis experiments. Energy and Fuels, 15 (15): 517–532, 2001.CrossRefGoogle Scholar
  13. R. di Primio and B. Horsfield. From petroleum–type organofacies to hydrocarbon phase prediction. AAPG Bulletin, 90: 1031–1058, 2006.CrossRefGoogle Scholar
  14. R. A. Donelick, R. A. Ketcham, and W. D. Carlson. Variablility of apatite fission–track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84: 1224–1234, 1999.Google Scholar
  15. I. R. Duddy, P. F. Green, and G. M. Laslett. Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour. Chemical Geology (Isotope Geoscience Section), 73: 25–38, 1988.CrossRefGoogle Scholar
  16. J. Espitalie, P. Ungerer, I. Irwin, and F. Marquis. Primary cracking of kerogens. experimenting and modelling C1, C2–C5, C6–C15 and C15+. Organic Geochemistry, 13: 893–899, 1988.CrossRefGoogle Scholar
  17. K. Gallagher, R. Brown, and C. Johnson. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet Sci., 26: 519–572, 1998.CrossRefGoogle Scholar
  18. S. Glasstone, K.J. Laidler, and H.Eyring. The theory of rate processes. McGraw-Hill, 1941.Google Scholar
  19. J. C. Goff. Hydrocarbon generation and migration from jurassic source rocks in East Shetland Basin and Viking graben of the northern North Sea. J. Geol. Soc. Lond., 140: 445–474, 1983.CrossRefGoogle Scholar
  20. P. F. Green. The relationship between track shortening and fission track age reduction in apatite: Combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth and Planetary Science Letters, 89: 335–352, 1988.CrossRefGoogle Scholar
  21. P. F. Green, I. R. Duddy, A. J. W. Gleadow, P.R. Tingate, and G. M. Laslett. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chemical Geology (Isotope Geoscience Section), 59: 237–253, 1986.CrossRefGoogle Scholar
  22. P. F. Green, I. R. Duddy, A. J. W. Gleadow, and J. F. Lovering. Apatite fission–track analysis as a paleotemperature indicator for hydrocarbon exploration. In N. D. Naeser and T. H. McCulloh, editors, Thermal History of Sedimentary Basins, Methods and Case Histories, pages 181–195. Springer–Verlag, 1989.Google Scholar
  23. P. F. Green, I. R. Duddy, G. M. Laslett, A. J. W. Gleadow, and J. F. Lovering. Thermal annealing of fission tracks in apatite 1. Quantitative modelling techniques and extension to geological timescales. Chemical Geology (Isotope Geoscience Section), 79: 155–182, 1989.CrossRefGoogle Scholar
  24. R. W. Jones. Organic facies. In Academic Press, editor, Advances in Petroleum Geochemistry, pages 1–90. 1987.Google Scholar
  25. R. A. Ketcham. Personal communication, 2003.Google Scholar
  26. R. A. Ketcham, R. A. Donelick, and M. B. Donelick. Aftsolve: A program for multi–kinetic modeling of apatite fission–track data. Geological Materials Research, 2, No. 1 (electronic), 2000.Google Scholar
  27. B. M. Krooss and R. di Primio. Personal communication, 2007.Google Scholar
  28. S. Larter. Bugs, biodegradation and biochemistry of heavy oil. The 23rd International Meeting on Organic Geochemistry, Torquay, England, 2007.Google Scholar
  29. S. R. Larter. Some pragmatic perspectives in source rock geochemistry. Marine and Petroleum Geology, 5: 194–204, 1988.CrossRefGoogle Scholar
  30. G. M. Laslett, P. F. Green, I. R. Duddy, and A. J. W. Gleadow. Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology (Isotope Geoscience Section), 65: 1–13, 1987.CrossRefGoogle Scholar
  31. A. S. Mackenzie and D. McKenzie. Isomerization and aromatization of hydrocarbons in sedimentary basins. Geological Magazine, 120: 417–470, 1983.CrossRefGoogle Scholar
  32. A. S. Pepper and P. J. Corvi. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12 (3): 291–319, 1995.CrossRefGoogle Scholar
  33. A. S. Pepper and P. J. Corvi. Simple kinetic models of petroleum formation. Part III: Modelling an open system. Marine and Petroleum Geology, 12 (4): 417–452, 1995.CrossRefGoogle Scholar
  34. A. S. Pepper and T. A. Dodd. Simple kinetic models of petroleum formation. Part II: oil – gas cracking. Marine and Petroleum Geology, 12 (3): 321–340, 1995.CrossRefGoogle Scholar
  35. K. E. Peters, C. C. Walters, and J. M. Moldowan. The Biomarker Guide, volume 1 and 2. Cambridge University Press, second edition, 2005.Google Scholar
  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C++. Cambridge University Press, second edition, 2002.Google Scholar
  37. M. Radke and D. H. Welte. The methylphenanthrene index (MPI): A maturity parameter based on aromatic hydrocarbons. In M. Bjoroy et al., editor, Advances in Organic Geochemistry. Proceedings of the 10th International Meeting on Organic Geochemistry, University of Bergen, Norway, 14–18 September 1981, Wiley and Sons, 1983.Google Scholar
  38. C. S. Sajgo and J. Lefler. A reaction kinetic approach to the temperature–time history of sedimentary basins. Lecture Notes in Earth Sciences, 5: 123–151, 1986.Google Scholar
  39. J. J. Sweeney and A. K. Burnham. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74: 1559–1570, 1990.Google Scholar
  40. E. W. Tegelaar and R. A. Noble. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis–gas chromatography. Advances in Organic Geochemistry, 22 (3–5): 543–574, 1994.CrossRefGoogle Scholar
  41. B. P. Tissot and D. H. Welte. Petroleum Formation and Occurrence. Springer–Verlag, Berlin, second edition, 1984.Google Scholar
  42. P. Ungerer, J. Burrus, B. Doligez, P. Y. Chenet, and F. Bessis. Basin evaluation by integrated two–dimensional modeling of heat transfer, fluid flow, hydrocarbon gerneration and migration. AAPG Bulletin, 74: 309–335, 1990.Google Scholar
  43. D. W. van Krevelen. Coal. Typology–Chemistry–Physics–Constitution . Elsevier, 1961.Google Scholar
  44. M. Vandenbroucke, F. Behar, and L. J. Rudkiewicz. Kinetic modelling of petroleum formation and cracking: implications from high pressure, high temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30: 1105–1125, 1999.CrossRefGoogle Scholar
  45. D. W. Waples. Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bulletin, 64: 916–926, 1980.Google Scholar
  46. R. W. T. Wilkins, C. P. Buckingham, N. Sherwood, Russel N. J., M. Faiz, and Kurusingal. The current status of famm thermal maturaty technique for petroleum exploration in australia. Australian Petroleum Prduction and Exploration Asociation Journal, 38: 421–437, 1998.Google Scholar
  47. K. Zengler, H. H. Richnow, R. Rossellaó-Mora, W. Michaelis, and F. Widdel. Methane formation from long–chain alkanes by anaerobic microorganisms. Nature, 401: 266–269, 1999.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Integrated Exploration Systems GmbH A Schlumberger CompanyAachenGermany

Personalised recommendations