Pore Pressure, Compaction and Tectonics

  • Thomas HantschelEmail author
  • Armin I. Kauerauf

Most physical transport and related processes depend on both, temperature and pressure. Pressure is one of the fundamental physical values. It is a scalar, which is represented with a single value in each location. The term pressure has only a real meaning for fluids and not solids. In porous media, pressure is often introduced as the pressure within the fluids in the pores, the pore pressure. The equivalent physical entity in solids is the stress tensor, which is a symmetrical 3x3 tensor with six independent values (Sec. 8.2). It can be illustrated with an ellipsoid, whose axes represent the principal stresses in size and direction. Usually, only single components or invariants of the stress tensor are important. Both, rock stress and pore pressure describe the response of the material to an external load. The “average” stress of the porous volume element is called bulk stress. It is therefore a superposition or mixture of pore pressure and rock stress and it has to be in equilibrium with all external loads.


Pore Pressure Lithostatic Pressure Salt Dome Mechanical Compaction Rock Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. F. Athy. Density, porosity and compaction of sedimentary rocks. American Association of Petroleum Geophysicists Bulletin, (14): 1–24, 1930.Google Scholar
  2. H. Bahlburg and C Breitkreuz. Grundlagen der Geology. Elsevier GmbH, Muenchen, second edition, 2004.Google Scholar
  3. M. A. Biot. General theory of three-dimensional consolidation. Journal of Applied Physics, (12): 155–164, 1941.Google Scholar
  4. P. A. Bjørkum. How improtant is pressure in causing dissolution of quartz in sandstones. Journal of Sedimentary Research, 66 (1): 147–154, 1996.Google Scholar
  5. P. A. Bjørkum and P. H. Nadenau. Temperature Controlled Porosity/Permeability Reduction, Fluid Migration, and Petroleum Exploration in Sedimentary Basins. APPEA Journal, 38 (Part 1): 452–464, 1998.Google Scholar
  6. P. A. Bjørkum, E. H. Oelkers, P. H. Nadeau, O. Walderhaug, and W. M. Murphy. Porosity Prediction in Quartzose Sandstones as a Function of Time, Temperature, Depth, Stylolite Frequency, and Hydrocarbon Saturation. AAPG Bulletin, 82 (4): 637–648, 1998.Google Scholar
  7. P. A. Bjørkum, O. Walderhaug, and P. H. Nadeau. Thermally driven porosity reduction: impact on basin subsidence. In The Petroleum Exploration of Ireland’s Offshore Basins, volume 188 of Special Publication, pages 385–392. Geological Society of London, 2001.Google Scholar
  8. A. Danesh. PVT and Phase Behaviour of Petroleum Reservoir Fluids.Number 47 in Developments in petroleum science. Elsevier, 1998.Google Scholar
  9. P. M. Doyen. Permability, Conductivity, and Pore Geometry of Sandstone. Journal of Geophysical Research, 93 (B7): 7729–7740, 1988.CrossRefGoogle Scholar
  10. W. A. England, A. S. MacKenzie, D. M. Mann, and T. M. Quigley. The movement and entrapment of petroleum fluids in the subsurface. Journal of the Geological Society, London, 144: 327–347, 1987.CrossRefGoogle Scholar
  11. E. Fjaer, R. M. Holt, P. Horsrud, A. M. Raan, and Risnes R. Petroleum related rock mechanics. Elsevier, 1992.Google Scholar
  12. J. R. Fulljames, L. J. J. Zijerveld, R. C. M. W. Franssen, G. M. Ingram, and P. D. Richard. Fault seal processes. In Norwegian Petroleum Society, editor, Hydrocarbon Seals - Importance for Exploration and Production, page 5. Norwegian Petroleum Society, Oslo, 1996.Google Scholar
  13. M. R. Giles, L. Indrelid, and D. M. D. James. Compaction – the great unknown in basin modelling. In S. J. Düppenbecker and J. E. Iliffe, editors, Basin Modelling: Practice and Progress, number 141 in Special Publication, pages 15–43. Geological Society of London, 1998.Google Scholar
  14. Hewlett-Packard. Petroleum fluids, manual. Technical Report HP-41C, 1985.Google Scholar
  15. C. Hilgers, S. Nollet, J. Schönherr, and J. L. Urai. Paleo–overpressure formation and dissipation in reservoir rocks. OIL GAS European Magazine, (2): 68–73, 2006.Google Scholar
  16. R. H. Lander and O. Walderhaug. Predicting Porosity through Simulating Sandstone Compaction and Quartz Cementation. AAPG Bulletin, 83 (3): 433–449, 1999.Google Scholar
  17. O. Lauvrak. Personal communication, 2007.Google Scholar
  18. X. Luo and G. Vasseur. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions. AAPG Bulletin, 76 (10): 1550–1559, 1992.Google Scholar
  19. X. Luo and G. Vasseur. Geopressuring mechanism of organic matter cracking: Numerical modeling. AAPG Bulletin, 80 (6): 856–874, 1996.Google Scholar
  20. G. Mavko, T. Mukerji, and J. Dvorkin. The Rock Physics Handbook. Cambridge University Press, 1998.Google Scholar
  21. C. I. Mc Dermott, A. L. Randriamantjatosoa, and Kolditz O. Pressure dependent hydraulic flow, heat transport and geo-thermo-mechanical deformation in hdr crystalline geothermal systems: Preliminary application to identify energy recovery schemes at urach spa. Technical report, Universitaet Tuebingen, Lehrstuhl fuer Angewandte Geologie, 2004.Google Scholar
  22. W. D. McCain Jr. The Properties of Petroleum Fluids.Pennwell Books, second edition, 1990.Google Scholar
  23. M. J. Osborne and R. E. Swarbrick. Mechanisms for generating overpressure in sedimentary basins: A re–evaluation. AAPG Bulletin, 81: 1023–1041, 1997.Google Scholar
  24. R. H. G. Parry. Mohr Circles, Stresspaths and Geotechnics. Spon Press, second edition, 2004.Google Scholar
  25. A. M. Pytte and R. C. Reynolds. The thermal transformation of smectite to illite. In N. D. Naeser and T. H. McCulloh, editors, Thermal History of Sedimentary Basins: Methods and Case Histories, pages 133–140. Springer–Verlag, 1989.Google Scholar
  26. F. Schneider and S. Hay. Compaction model for quartzose sandstones application to the Garn Formation, Haltenbanken, Mid–Norwegian Continental Shelf. Marine and Petroleum Geology, 18: 833–848, 2001.CrossRefGoogle Scholar
  27. F. Schneider, J. L. Potdevin, S. Wolf, and I. Faille. Mechanical and chemical compaction model for sedimentary basin simulators. Tectonophysics, 263: 307–313, 1996.CrossRefGoogle Scholar
  28. D. Schulze-Makuch, D. S. Carlson, D. S. Cherkauer, and Malik P. Scale dependency of hydraulic conductivity in heterogeneous media. Groundwater, 37: 904–919, 1999.Google Scholar
  29. J. E. Smith. The dynamics of shale compaction and evolution of pore fluid pressure. Mathematical Geology, (3): 239–263, 1971.Google Scholar
  30. R. E. Swarbrick, M. J. Osborne, and Gareth S. Yardley. Comparison of Overpressure Magnitude Resulting from the Main Generating Mechanisms. In A. R. Huffmann and G. L. Bowers, editors, Pressure regimes in sedimentary basins and their prediction, volume 76, pages 1–12. AAPG Memoir, 2002.Google Scholar
  31. K. Terzaghi. Die Berechnung der Duerchlässigkeitsziffer des Tones im Verlauf der hydrodynamischen Spannungserscheinungen. Szber Akademie Wissenschaft Vienna, Math–naturwissenschaft Klasse IIa, (132): 125–138, 1923.Google Scholar
  32. P. Ungerer, J. Burrus, B. Doligez, P. Y. Chenet, and F. Bessis. Basin evaluation by integrated two–dimensional modeling of heat transfer, fluid flow, hydrocarbon gerneration and migration. AAPG Bulletin, 74: 309–335, 1990.Google Scholar
  33. L. Vidal-Beaudet and S. Charpentier. Percolation theory and hydrodynamics of soil–peat mixtures. Soil Sci. Soc. AM. J., 64: 827–835, 2000.CrossRefGoogle Scholar
  34. O. Walderhaug. Modeling quartz cementation and porosity in middle jurassic brent group sandstones of the Kvitenbjoern field, northern North Sea. AAPG Bulletin, 84: 1325–1339, 2000.Google Scholar
  35. O. Walderhaug. Kinetic modelling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bulletin, 5: 80, 1996.Google Scholar
  36. O. Walderhaug, P. A. Bjørkum, P. H. Nadeau, and O. Langnes. Quantitative modelling of basin subsidence caused by temperature–driven silicia dissolution and reprecipitation. Petroleum Geoscience, 7: 107–113, 2001.Google Scholar
  37. A. Y. Yang and A. C. Aplin. Definition and practical application of mudstone porosity-effective stress relationships. Petroleum Geoscience, 10: 153–162, 2004.CrossRefGoogle Scholar
  38. G. Yielding. Shale Gouge Ratio – calibration by geohistory. In A. G. Koestler and R. Hunsdale, editors, Hydrocarbon Seal Quantification, number 11 in NPF Special Publication, pages 1–15. Elsevier Science B.V., Amsterdam, 2002.Google Scholar
  39. G. Yielding, B. Freeman, and D. T. Needham. Quantitative Fault Seal Prediction. AAPG Bulletin, 81 (6): 897–917, 1997.Google Scholar
  40. O. C. Zienkiewicz. Methode der finiten Elemente. Carl Hanser, second edition, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Integrated Exploration Systems GmbH A Schlumberger CompanyAachenGermany

Personalised recommendations