Skip to main content

Diagnosis and Classification of the Acute Myeloid Leukemias (with Discussion of the Role of the Myelodysplastic Syndromes in AML Pathogenesis)

  • Chapter
Acute Leukemias

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

The Acute Myeloid Leukemias (AML) are a diverse set of phenotypically similar diseases whose classification has been the source of some controversy in recent years. In this chapter we discuss the best current clinically and biologically relevant classification of these diseases, including appropriate laboratory studies for accurate diagnosis and subclassification. Understanding the basis for current classification of AML requires additional knowledge of the Myelodysplastic Syndromes (MDS) and their relationship to a subset of AML, which will also be discussed. Finally, some attention will be devoted to monitoring AML during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett JM, Catovsky D, Daniel MT, et al. (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33(4):451–458

    PubMed  CAS  Google Scholar 

  2. Head DR (1996) Revised classification of acute myeloid leukemia. Leukemia 10(11):1826–1831

    PubMed  CAS  Google Scholar 

  3. Brunning RD, Matute E, Harris NL, et al. (2001) Acute myeloid leukemias. In: Jaffe EJ HN, Stein H, Vardiman JW (eds) World Health Organization Classification of Tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 75–105

    Google Scholar 

  4. Durst KL, Lutterbach B, Kummalue T, et al. (2003) The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23:607–619

    PubMed  CAS  Google Scholar 

  5. Licht JD (2001) AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20:5660–5679

    PubMed  CAS  Google Scholar 

  6. Licht JD, Chomienne C, Goy A, et al. (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85:1083

    PubMed  CAS  Google Scholar 

  7. Lin RJ, Nagy L, Inoue S, et al. (1998) Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature 391:811

    PubMed  CAS  Google Scholar 

  8. Gilliland DG (1998) Molecular genetics of human leukemia. Leukemia (Suppl) 1:S7–12

    Google Scholar 

  9. Gilliland DG (2002) Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 39(4 Suppl 3):6–11

    PubMed  CAS  Google Scholar 

  10. Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100:1532–1542

    PubMed  CAS  Google Scholar 

  11. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365

    PubMed  CAS  Google Scholar 

  12. Gari M, Goodeve A, Wilson G, et al. (1999) c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 105(4):894–900

    PubMed  CAS  Google Scholar 

  13. Neubauer A, Dodge RK, George SL, et al. (1994) Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia. Blood 83(6):1603–1611

    PubMed  CAS  Google Scholar 

  14. Radich JP, Kopecky KJ, Willman CL, et al. (1990) N-ras mutations in adult de novo acute myelogenous leukemia: prevalence and clinical significance. Blood 76(4):801–807

    PubMed  CAS  Google Scholar 

  15. Hahn WC, Weinberg RA (2002) Modelling the molecular circuitry of cancer. Nat Rev Cancer 2(5):331–341

    PubMed  CAS  Google Scholar 

  16. Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347(20):1593–1603

    PubMed  CAS  Google Scholar 

  17. Pui CH, Ribeiro RC, Hancock ML, et al. (1991) Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 325(24):1682–1687

    PubMed  CAS  Google Scholar 

  18. Sandoval C, Pui CH, Bowman LC, et al. (1993) Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol 11(6):1039–1045

    PubMed  CAS  Google Scholar 

  19. Morishita K, Suzukawa K, Taki T, et al. (1995) EVI-1 zinc finger protein works as a transcriptional activator via binding to a consensus sequence of GACAAGATAAGATAAN1–28 CTCATCTTC. Oncogene 10(10):1961–1967

    CAS  Google Scholar 

  20. Wechsler J, Greene M, McDevitt MA, et al. (2002) Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet 32(1):148–152

    PubMed  CAS  Google Scholar 

  21. Leith CP, Kopecky KJ, Chen IM, et al. (1999) Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: A Southwest Oncology Group Study. Blood 94(3):1086–1099

    PubMed  CAS  Google Scholar 

  22. Leith CP, Kopecky KJ, Godwin J, et al. (1997) Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 89(9):3323–3329

    PubMed  CAS  Google Scholar 

  23. Fialkow PJ, Singer JW, Raskind WH, et al. (1987) Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med 317(8):468–473

    PubMed  CAS  Google Scholar 

  24. Levine EG, Bloomfield CD (1992) Leukemias and myelodysplastic syndromes secondary to drug, radiation, and environmental exposure. Semin Oncol 19(1):47–84

    PubMed  CAS  Google Scholar 

  25. Bennett JM, Catovsky D, Daniel MT, et al. (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51(2):189–199

    PubMed  CAS  Google Scholar 

  26. Brunning RD, Bennett JM, Flandrin G, et al. (2001) Myelodysplastic syndromes. In: Jaffe EJ HN, Stein H, Vardiman JW (eds) World Health Organization Classification of Tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 61–73

    Google Scholar 

  27. Vardiman JW, Pierre R, Bain B, et al. (2001) Myelodysplastic/myeloproliferative diseases. In: Jaffe EJ HN, Stein H, Vardiman JW (eds) World Health Organization Classification of Tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 45–59

    Google Scholar 

  28. Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3):172–183

    PubMed  CAS  Google Scholar 

  29. James C, Ugo V, Le Couedic JP, et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434(7037):1144–1148

    PubMed  CAS  Google Scholar 

  30. Wiemels JL, Xiao Z, Buffler PA, et al. (2002) In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood 99(10):3801–3805

    PubMed  CAS  Google Scholar 

  31. Arico M, Biondi A, Pui C (1997) Juvenile myelomonocytic leukemia. Blood 90(2):479–488

    PubMed  CAS  Google Scholar 

  32. Flotho C, Valcamonica S, Mach-Pascual S, et al. (1999) RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 13(1):32–37

    PubMed  CAS  Google Scholar 

  33. Loh ML, Vattikuti S, Schubbert S, et al. (2004) Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 103(6):2325–2331

    PubMed  CAS  Google Scholar 

  34. Tartaglia M, Niemeyer CM, Fragale A, et al. (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34(2):148–150

    PubMed  CAS  Google Scholar 

  35. Cermak J, Michalova K, Brezinova J, et al. (2003) A prognostic impact of separation of refractory cytopenia with multilineage dysplasia and 5q-syndrome from refractory anemia in primary myelodysplastic syndrome. Leuk Res 27(3):221–229

    PubMed  Google Scholar 

  36. Dunkley SM, Manoharan A, Kwan YL (2002) Myelodysplastic syndromes: prognostic significance of multilineage dysplasia in patients with refractory anemia or refractory anemia with ringed sideroblasts. Blood 99(10):3870–3871; author reply 3871

    PubMed  CAS  Google Scholar 

  37. Wikipedia. Tomás de Torquemada. www.wikipedia.com

    Google Scholar 

  38. Stelzer GT, Shults KE, Loken MR (1993) CD45 gating for routine flow cytometric analysis of human bone marrow specimens. Ann NY Acad Sci 677:265–280

    PubMed  CAS  Google Scholar 

  39. Matutes E, Morilla R, Farahat N, et al. (1997) Definition of acute biphenotypic leukemia. Haematologica 82(1):64–66

    PubMed  CAS  Google Scholar 

  40. Kussick SJ, Wood BL (2003) Using 4-color flow cytometry to identify abnormal myeloid populations. Arch Pathol Lab Med 127(9):1140–1147

    PubMed  Google Scholar 

  41. Miller TL, Stelzer G (2001) Contributions of flow cytometry to the analysis of the myelodysplastic syndrome. Clin Lab Med 21(4):811–828

    PubMed  CAS  Google Scholar 

  42. Stetler-Stevenson M, Arthur DC, Jabbour N, et al. (2001) Diagnostic utility of flow cytometric immunophenotyping in myelodysplastic syndrome. Blood 98(4):979–987

    PubMed  CAS  Google Scholar 

  43. Mrozek K, Heinonen K, Bloomfield CD (2001) Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol 14:19–47

    PubMed  CAS  Google Scholar 

  44. Andrieu V, Radford-Weiss I, Troussard X, et al. (1996) Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: Correlation with cytogenetics, morphology and immunophenotype. Br J Haematol 92(4):855–865

    PubMed  CAS  Google Scholar 

  45. Langabeer SE, Walker H, Gale RE, et al. (1997) Frequency of CBF beta/MYH11 fusion transcripts in patients entered into the U.K. MRC AML trials. The MRC Adult Leukaemia Working Party. Br J Haematol 96(4):736–739

    PubMed  CAS  Google Scholar 

  46. Grimwade D (1999) The pathogenesis of acute promyelocytic leukaemia: Evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 106(3):591–613

    PubMed  CAS  Google Scholar 

  47. Bagg A, Arber DA (2003) USCAP Short Course #49 (syllabus)

    Google Scholar 

  48. Raanani P, Ben-Bassat I (2004) Detection of minimal residual disease in acute myelogenous leukemia. Acta Haematologica 112:40–54

    PubMed  CAS  Google Scholar 

  49. Huang ME, Ye YC, Chen SR, et al. (1988) Use of all trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572

    PubMed  CAS  Google Scholar 

  50. Borrow J, Goddard AD, Sheer D, et al. (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249:1577–1580

    PubMed  CAS  Google Scholar 

  51. de Thé H, Chomienne C, Lanotte M, et al. (1990) The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor a gene to α novel transcribed locus. Nature 347:558–561

    PubMed  Google Scholar 

  52. Longo L, Pandolfi PP, Biondi A, et al. (1990) Rearrangements and aberrant expression of the RARα gene in acute promyelocytic leukemia. J Exp Med 172:1571–1575

    PubMed  CAS  Google Scholar 

  53. Cantu-Rajnoldi A, Biondi A, Jankovic M, et al. (1993) Diagnosis and incidence of acute promyelocytic leukemia (FAB M3 and M3 variant) in childhood. Blood 81(8):2209–2210

    PubMed  CAS  Google Scholar 

  54. Grimwade D, Biondi A, Mozziconacci MJ, et al. (2000) Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): Results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies.” Blood 96(4):1297–1308

    PubMed  CAS  Google Scholar 

  55. Sainty D, Liso V, Cantu-Rajnoldi A, et al. (2000) A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Group Francais de Cytogenetique Hematologique, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies.” Blood 96(4):1287–1296

    PubMed  CAS  Google Scholar 

  56. Geng JP, Tong JH, Dong S, et al. (1993) Localization of the chromosome 15 breakpoints and expression of multiple PML-RAR alpha transcripts in acute promyelocytic leukemia: A study of 28 Chinese patients. Leukemia 7:20–26

    PubMed  CAS  Google Scholar 

  57. Guidez F, Ivins S, Zhu J, et al. (1998) Reduced retinoic acid-sensitivities of nuclear receptor co-repressor binding to PML-and PLZF-RARα underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 91:2634

    PubMed  CAS  Google Scholar 

  58. Melnick A, Licht JD (1999) Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93:3167–3215

    PubMed  CAS  Google Scholar 

  59. He LZ, Guidez F, Triboli C, et al. (1998) Distinct interactions of PMLRARa and PLZF-RARα with co-repressors determine differential responses to RA in APL. Nat Genet 18:126

    PubMed  CAS  Google Scholar 

  60. Grignani F, De Metteis S, Nervi C, et al. (1998) Fusion proteins of the retinoic acid receptor-α recruit histone deacetylase in promyelocytic leukemia. Nature 391:815

    PubMed  CAS  Google Scholar 

  61. Redner RL, Rush EA, Faas S, et al. (1996) The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 87:882

    PubMed  CAS  Google Scholar 

  62. Wells RA, Catzavelos C, Kamel-Reid S (1997) Fusion of retinoic acid receptor alpha to NuMA, the mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet 17:109

    PubMed  CAS  Google Scholar 

  63. Erickson P, Gao J, Chang KS, et al. (1992) Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 80:1825–1831

    PubMed  CAS  Google Scholar 

  64. Liu P, Tarle SA, Hajra A, et al. (1993) Fusion between transcription factor CBFbeta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 261:1041–1044

    PubMed  CAS  Google Scholar 

  65. Libermann TA, Pan Z, Akbarali Y, et al. (1999) AML1 (CBFalpha2) cooperates with B cell-specific activating protein (BSAP/PAX5) in activation of the B cell-specific BLK gene promoter. J Biol Chem 274(35):24671–24676

    PubMed  CAS  Google Scholar 

  66. Bruhn L, Munnerlyn A, Grosschedl R (1997) ALY, a context-dependent coactivator of LEF-1 and AML1 is required for TCRalpha enhancer function. Genes Dev 11:640–653

    PubMed  CAS  Google Scholar 

  67. Uchida H, Zhang J, Nimer S (1997) AML1A and AML1B can transactivate the human IL-3 promoter. J Immunol 158:2251–2258

    PubMed  CAS  Google Scholar 

  68. Takahashi A, Satake M, Yamaguchi-Iwai Y, et al. (1995) Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Blood 86(2):607–616

    PubMed  CAS  Google Scholar 

  69. Nuchprayoon I, Meyers S, Scott LM, et al. (1994) PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 14(8):5558–5568

    PubMed  CAS  Google Scholar 

  70. Okuda T, van Deursen J, Hiebert SW, et al. (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330

    PubMed  CAS  Google Scholar 

  71. Wang Q, Stacy T, Miller JD, et al. (1996) The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 87:697–708

    PubMed  CAS  Google Scholar 

  72. North T, Gu TL, Stacy T, et al. (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126:2563–2575

    PubMed  CAS  Google Scholar 

  73. Miyoshi H, Ohira M, Shimizu K, et al. (1995) Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res 23:2762–2769

    PubMed  CAS  Google Scholar 

  74. Levanon D, Negreanu V, Bernstein Y, et al. (1994) AML1, AML2, and AML3, the human members of the runt domain gene-family: cDNA structure, expression, and chromosomal localization. Genomics 23(2):425–432

    PubMed  CAS  Google Scholar 

  75. Michaud J, Wu F, Osato M, et al. (2002) In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: Implications for mechanisms of pathogenesis. Blood 99(4): 1364–1372

    PubMed  CAS  Google Scholar 

  76. Osato M, Asou N, Abdalla E, et al. (1999) Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 93:1817–1824

    PubMed  CAS  Google Scholar 

  77. Tahirov TH, Inoue-Bungo T, Morii H, et al. (2001) Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 104(5):755–767

    PubMed  CAS  Google Scholar 

  78. Feinstein PG, Kornfeld K, Hogness DS, et al. (1995) Identification of homeotic target genes in Drosophila melanogaster including nervy, a proto-oncogene homologue. Genetics 140:573–586

    PubMed  CAS  Google Scholar 

  79. Erickson PF, Dessev G, Lasher RS, et al. (1996) ETO and AML1 phosphoproteins are expressed in CD34+ hematopoietic progenitors: implications for t(8;21) leukemogenesis and monitoring residual disease. Blood 88(5):1813–1823

    PubMed  CAS  Google Scholar 

  80. Melnick A, Licht JD (2002) Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 9:322–332

    PubMed  Google Scholar 

  81. Amann JM, Nip J, Strom DK, et al. (2001) ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 21:6470–6483

    PubMed  CAS  Google Scholar 

  82. de Greef GE, Hagemeijer A, Morgan R, et al. (1995) Identical fusion transcript associated with different breakpoints in the AML1 gene in simple and variant t(8;21) acute myeloid leukemia. Leukemia 9:282–287

    PubMed  Google Scholar 

  83. Meyers S, Downing JR, Hiebert SW (1993) Identification of AML1 and the (8;21) translocation protein (AML1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13(10):6336–6345

    PubMed  CAS  Google Scholar 

  84. Linggi B, Muller-Tidow C, van de Locht L, et al. (2002) The t(8;21) fusion protein, AML1-ETO, specifically represses the transcription of the p14ARF tumor suppressor in acute myeloid leukemia. Nat Med 8:743–750

    PubMed  CAS  Google Scholar 

  85. Zhang X, Ren R (1998) Ber-Abl efficiently induces a myeloproliferative disease and production of excess interleukin-3 and granulocyte-macrophage colony-stimulating factor in mice: A novel model for chronic myelogenous leukemia. Blood 92:3829–3840

    PubMed  CAS  Google Scholar 

  86. Downing JR, Head DR, Curcio-Brint AM, et al. (1993) An AML1/ETO fusion transcript is consistently detected by RNA-based polymerase chain reaction in acute myelogenous leukemia containing the (8;21)(q22;q22) translocation. Blood 81(11):2860–2865

    PubMed  CAS  Google Scholar 

  87. Shurtleff SA, Meyers S, Hiebert SW, et al. (1995) Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16) (p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood 85(12):3695–3703

    PubMed  CAS  Google Scholar 

  88. Dimartino JF, Cleary ML (1999) MLL rearrangements in haematological malignancies: Lessons from clinical and biological studies. Br J Haematol 106:614–626

    PubMed  CAS  Google Scholar 

  89. Ernst P, Wang J, Korsmeyer SJ (2002) The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol 9:282–287

    PubMed  Google Scholar 

  90. Ayton PM, Cleary ML (2001) Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20:5695–5707

    PubMed  CAS  Google Scholar 

  91. Ingham PW (1998) Trithroax and the regulation of homeotic gene expression in Drosophila: a historical perspective. Int J Dev Biol 42:423–429

    PubMed  CAS  Google Scholar 

  92. Gehring WJ, Affolter M, Burglin T (1994) Homeodomain proteins. Ann Rev Biochem 63:487–526

    PubMed  CAS  Google Scholar 

  93. Yu BD, Hanson RD, Hess JL, et al. (1998) MLL, a mammalian trithroax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci 1998:10632–10636

    Google Scholar 

  94. Heim S, Mitelman F (1995) Cancer cytogenetics: Chromosomal and molecular aberrations of tumor cells, 2nd edn. Wiley, New York

    Google Scholar 

  95. Harrison CJ, Cuneo A, Clark R, et al. (1998) Ten novel 11q23 chromosomal partner sites. European 11q23 workshop participants. Leukemia 12(5):811–822

    PubMed  CAS  Google Scholar 

  96. Secker-Walker LM (1998) General report on the European Union Concerted Action Workshop on 11q23, U.K., May 1997. Leukemia 12:776–778

    PubMed  CAS  Google Scholar 

  97. Gu Y, Nakamura T, Adler H, et al. (1992) The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithroax, to the AF-4 gene. Cell 71:701–708

    PubMed  CAS  Google Scholar 

  98. Rubnitz JE, Link MP, Shuster JJ, et al. (1994) Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia; a Pediatric Oncology Group study. Blood 84:570–573

    PubMed  CAS  Google Scholar 

  99. Hunger SP, Tkachuck MD, Amylon MP, et al. (1993) HRX involvement in de novo and secondary leukemias with diverse chromosome 11q23 abnormalities. Blood 81:3197–3203

    PubMed  CAS  Google Scholar 

  100. Cimino G, Rapanotti MC, Biondi A, et al. (1997) Infant acute leukemias show the same biased distribution of ALL1 gene breaks as topoisomerase II related secondary leukemias. Cancer Res 57:2879–2883

    PubMed  CAS  Google Scholar 

  101. Ross JA, Potter JD, Reaman GH, et al. (1996) Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): A report from the Children’s Cancer Group. Cancer Causes Control 7:581–590

    PubMed  CAS  Google Scholar 

  102. Tenen DG, Hromas R, Licht J, et al. (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90(2):489–519

    PubMed  CAS  Google Scholar 

  103. Vinson CR, Sigler PB, McKnight SL (1989) Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246(4932):911–916

    PubMed  CAS  Google Scholar 

  104. Zhang DE, Zhang P, Wang ND, et al. (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci USA 94(2):569–574

    PubMed  CAS  Google Scholar 

  105. Radomska HS, Huettner CS, Zhang P, et al. (1998) CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 18(7):4301–4314

    PubMed  CAS  Google Scholar 

  106. Gombart A, Hofmann WK, Kawano S, et al. (2002) Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 99(4):1332–1340

    PubMed  CAS  Google Scholar 

  107. Pabst T, Mueller BU, Zhang P, et al. (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27(3):263–270

    PubMed  CAS  Google Scholar 

  108. Preudhomme C, Sagot C, Boissel N, et al. (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: A study from the Acute Leukemia French Association (ALFA). Blood 100(8):2717–2723

    PubMed  CAS  Google Scholar 

  109. Smith ML, Cavenagh JD, Lister TA, et al. (2004) Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 351(23):2403–2407

    PubMed  CAS  Google Scholar 

  110. Greene ME, Mundschau G, Wechsler J, et al. (2003) Mutations in GATA1 in both transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome. Blood Cells Mol Dis 31(3):351–356

    PubMed  CAS  Google Scholar 

  111. Gurbuxani S, Vyas P, Crispino JD (2004) Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 103(2):399–406

    PubMed  CAS  Google Scholar 

  112. Soderholm J, Kobayashi H, Mathieu C, et al. (1997) The leukemiaassociated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia 11(3):352–358

    PubMed  CAS  Google Scholar 

  113. Brasel K, Escobar S, Anderberg R, et al. (1995) Expression of the Flt3 receptor and its ligand on hematopoietic cells. Leukemia 9:1212–1218

    PubMed  CAS  Google Scholar 

  114. Nakao M, Yokota S, Iwai T, et al. (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10:1911–1918

    PubMed  CAS  Google Scholar 

  115. Kiyoi H, Towatari M, Yokota S, et al. (1998) Internal tandem duplication of the FLT3 gene is a novel modality of elongation mutation which causes constitutive activation of the product. Leukemia 12:1333–1337

    PubMed  CAS  Google Scholar 

  116. Mizuki M, Fenski R, Halfter H, et al. (2000) Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 96:3907–3914

    PubMed  CAS  Google Scholar 

  117. Yamamoto Y, Kiyoi H, Nakano Y, et al. (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97:2434–2439

    PubMed  CAS  Google Scholar 

  118. Meshinchi S, Woods WG, Stirewalt DL, et al. (2001) Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 97:89–94

    PubMed  CAS  Google Scholar 

  119. Fröhling S, Schlenk RF, Breitruck J, et al. (2002) Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML Study Group Ulm. Blood 1100:4372–4380

    PubMed  Google Scholar 

  120. Sawyers CL (2002) Finding the next Gleevec, FLT3-targeted kinase inhibitor therapy for acute myeloid leukemia. Cancer Cell 1:413–415

    PubMed  CAS  Google Scholar 

  121. Ruggero D, Pandolfi PP (2003) Does the ribosome translate cancer? Nat Rev Cancer 3(3):179–192

    PubMed  CAS  Google Scholar 

  122. Grisendi S, Pandolfi PP (2005) NPM mutations in acute myelogenous leukemia. N Engl J Med 352(3):291–292

    PubMed  CAS  Google Scholar 

  123. Morris SW, Kirstein MN, Valentine MB, et al. (1995) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 267(5196):316–317

    PubMed  CAS  Google Scholar 

  124. Yoneda-Kato N, Look AT, Kirstein MN, et al. (1996) The t(3;5) (q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 12(2):265–275

    PubMed  CAS  Google Scholar 

  125. Boissel N, Renneville A, Biggio V, et al. (2005) Prevalence, clinical profile, and prognosis of NPM mutations in AMLwith normal karyotype. Blood 106(10):3618–3620

    PubMed  CAS  Google Scholar 

  126. Falini B, Mecucci C, Tiacci E, et al. (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266

    PubMed  CAS  Google Scholar 

  127. Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405(6788):827–836

    PubMed  CAS  Google Scholar 

  128. Valk PJ, Delwel R, Lowenberg B (2005) Gene expression profiling in acute myeloid leukemia. Curr Opin Hematol 12:76–81

    PubMed  CAS  Google Scholar 

  129. Valk PJ, Verhaak RG, Beijen MA, et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    PubMed  CAS  Google Scholar 

  130. Ross ME, Mahfouz R, Onciu M, et al. (2004) Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104:3679–3687

    PubMed  CAS  Google Scholar 

  131. Bullinger L, Dohner K, Bair E, et al. (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616

    PubMed  CAS  Google Scholar 

  132. Wilson CS, Davidson GS, Martin SB, et al. (2006) Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 108:685–696

    PubMed  CAS  Google Scholar 

  133. Bourquin JP, Subramanian A, Langebrake C, et al. (2006) Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc Natl Acad Sci USA 103:3339–3344

    PubMed  CAS  Google Scholar 

  134. Jaeger U, Kainz B (2003) Monitoring minimal residual disease in AML: The right time for real time. Ann Hematol 82:139–147

    PubMed  CAS  Google Scholar 

  135. Goulden N, Virgo P, Grimwade D (2006) Minimal residual disease directed therapy for childhood acute myeloid leukaemia: The time is now. Br J Haematol 134:273–282

    PubMed  Google Scholar 

  136. Kern W, Schoch C, Haferlach T, et al. (2005) Monitoring of minimal residual disease in acute myeloid leukemia. Crit Rev Oncol Hematol 56:283–309

    PubMed  Google Scholar 

  137. Lo-Coco F, Romano A, Mengarelli A, et al. (2002) Molecular monitoring of hematologic malignancies: current and future issues. Semin Hematol 39(Suppl 1):14–17

    PubMed  CAS  Google Scholar 

  138. Reiter A, Lengfelder E, Grimwade D (2004) Pathogenesis, diagnosis, and monitoring of residual disease in acute promyelocytic leukaemia. Acta Haematol 112:55–67

    PubMed  Google Scholar 

  139. Cheson BD, Bennett JM, Kopecky KJ, et al. (2003) Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol 21:4642–4649

    PubMed  Google Scholar 

  140. Schnittger S, Schoch C (2005) Quantitative PCR based minimal residual disease detection in core binding factor leukemias: Prognostication and guiding of therapy. Leukemia Res 30:657–658

    Google Scholar 

  141. Grimwade D, Walker H, Oliver F, et al. (1998) The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7):2322–2333

    PubMed  CAS  Google Scholar 

  142. Slovak ML, Kopecky KJ, Cassileth PA, et al. (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96(13):4075–4083

    PubMed  CAS  Google Scholar 

  143. Aul C, Gattermann N, Schneider W (1992) Age-related incidence and other epidemiological aspects of myelodysplastic syndromes. Br J Haematol 82(2):358–367

    PubMed  CAS  Google Scholar 

  144. Cartwright RA, McNally RJQ, Rowland DJ, et al. (1997) The descriptive epidemiology of leukaemia and related conditions in parts of the United Kingdom, 1984–1993. Leukemia Research Fund, London

    Google Scholar 

  145. Hasle H, Kerndrup G, Jacobsen BB (1995) Childhood myelodysplastic syndrome in Denmark: Incidence and predisposing conditions. Leukemia 9(9):1569–1572

    PubMed  CAS  Google Scholar 

  146. Hasle H, Wadsworth LD, Massing BG, et al. (1999) A populationbased study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol 106(4):1027–1032

    PubMed  CAS  Google Scholar 

  147. Passmore SJ, Chessells JM, Kempski H, et al. (2003) Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia in the UK: A population-based study of incidence and survival. Br J Haematol 121(5):758–767

    PubMed  Google Scholar 

  148. Radlund A, Thiede T, Hansen S, et al. (1995) Incidence of myelodysplastic syndromes in a Swedish population. Eur J Haematol 54(3):153–156

    PubMed  CAS  Google Scholar 

  149. Schnittger S, Schoch C, Kern W, et al. (2003) Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: Incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia. Haematologica 88(3):351–352

    PubMed  Google Scholar 

  150. Smith MT, Linet MS, Morgan GJ (2002) Causative agents in the etiology of myelodysplastic syndromes and the acute myeloid leukemias. In: Brand JM (ed) The myelodysplastic syndromes, pathobiology and clinical management. Marcel Dekker, New York, pp 29–63

    Google Scholar 

  151. Stevens RG (1986) Age and risk of acute leukemia. J Natl Cancer Inst 76(5):845–848

    PubMed  CAS  Google Scholar 

  152. Head DR (2000) Reply: Problematic WHO reclassification of myelodysplastic syndrome. J Clin Oncol 18:3451–3452

    Google Scholar 

  153. Head DR (2002) Proposed changes in the definitions of acute myeloid leukemia and myelodysplastic syndrome: Are they helpful? Curr Opin Oncol 14(1):19–23

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Head, D., Thompson, M.A. (2008). Diagnosis and Classification of the Acute Myeloid Leukemias (with Discussion of the Role of the Myelodysplastic Syndromes in AML Pathogenesis). In: Acute Leukemias. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72304-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72304-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72302-8

  • Online ISBN: 978-3-540-72304-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics